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A message from your Conference Chair 

The first ever International Operational Modal Analysis Conference, IOMAC, was held in the 
beautiful city of Copenhagen in Denmark in 2005.  Since then, every two years, IOMAC has been 
held in other beautiful and exciting cities in like Portonovo, Italy, Istanbul, Turkey, Guimaraes, 
Portugal, Gijón, Spain, and Ingolstadt, Germany.  All these European cities have hosted IOMAC 
and have seen how this conference has matured over the years, and has been the catalyst to 
make Operational Modal Analysis, OMA, a practical and useful tool for evaluating the dynamic 
behaviour of all kinds of structures.  When IOMAC started in 2005, the main purpose of the 
conference was to provide a venue for people interested in OMA to exchange experiences and 
research results in this field.  At that time OMA was still considered a new field and there was a 
clear need to better understand what OMA was about and its potential to be useful in many areas 
of structural vibrations.  Over the ensuing years, the IOMAC conferences have continued to be an 
excellent venue to exchange experiences on how to use OMA for a variety of applications, to 
report and discuss findings about the advantages and challenges of the technology and to share 
new research and advances on the applicability of OMA to many fields where vibrations are an 
issue. 

As a departure from the traditional way of having IOMAC in the “Old Continent,” this time the 9th 
IOMAC will be held in Vancouver, one of the most beautiful and vibrant cities of the “New 
Continent.”  The conference will be held from the 3rd to the 6th of July 2022.  In, addition to the 
conference, several pre-conference courses will be offered to people interested in gaining a 
deeper understanding of various aspects of OMA. As it has been a tradition with past conferences, 
the conference will include the “Lecture of Honor” and the Keynote Lecture.  The sessions during 
the conference will cover all major aspects of OMA, with focus on the following topics: 
Identification Techniques, Measurement Techniques, Applications in Civil Structures, Applications 
in Mechanical Structures, Comparison with Traditional Modal Analysis, Model Validation and 
Model Updating, Structural Modification, Structural Health Monitoring and Wind Turbines.  

The theme of the conference is “Reaching Beyond Borders” and reflects the fact that OMA is not 
limited by any type of borders, physical or intellectual, and that there is a tremendous opportunity 
to explore new applications of the technology, so it is natural to join together to explore these 
new challenges. This includes researchers, practicing engineers and technicians, students, 
equipment vendors, and software developers.  All will have the opportunity to share their 
knowledge in this rather fascinating field and to improve their specific skills.  

We expect that the 9th IOMAC will be a source of both professional fruits and lasting friendships 
for all participants. We also expect that it will serve to identify topics of cooperation that will help 
the IOMAC Organization to fulfill its mission of promoting the interchange of information and 
technical cooperation. Above all, I hope it will contribute to create and strengthen our human and 
professional ties in goal to make OMA a useful and practical tool. 

Dr. Carlos E. Ventura 

Professor of Civil Engineering and Director of EERF 
The University of British Columbia, Vancouver, BC, Canada 
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Dr. Carlos Ventura is currently the Director of the Earthquake Engineering Research Facility (EERF) at 

UBC and has more than 30 years of experience as a structural engineer.  Dr. Ventura's areas of research 

are in Structural Dynamics and Earthquake Engineering. He has been conducting research on the 

dynamic behavior and analysis of structural systems subjected to extreme dynamic loads, including 

severe ground shaking for more than twenty years. His research work includes experimental studies 

in the field and in the laboratory of structural systems and components.   Research developments have 

included development and implementation of performance-based design methods for seismic retrofit 

of low rise school buildings, novel techniques for regional estimation of damage to structures during 

earthquakes, detailed studies on nonlinear dynamic analysis of structures and methods to evaluate 

the dynamic characteristics of large Civil Engineering structures.  His current research is focused on 

the development of performance-based guidelines for seismic retrofit of schools, on methods to 

evaluate the interaction between critical infrastructure vulnerable to natural and man-made hazards, 

and on structural health monitoring of building, bridges and dams. Dr. Ventura has written over 400 

technical papers and reports related to the seismic behavior of structures, and has received numerous 

awards for his research accomplishments, including the Lieutenant Governor's Award of Excellence 

(2013), the Innovation Award of the Canadian Society of Civil Engineering (2010) and the APEGBC 

Meritorious Achievement Award (2006).  He is a member of several national and international 

professional societies and advisory committees.  He is a member of the Canadian Academy of 

Engineering and Fellow of Engineers Canada.  He is also a member of several building and bridge code 

committees. In addition to his academic activities, Dr. Ventura is a recognized international consultant 

on structural vibrations and safety of large Civil Engineering structures. 
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DEMONSTRATION OF TUNED MASS DAMPER 

EFFECTIVENESS VIA LONG-TERM STRUCTURAL 

MONITORING 

Ronwaldo Aquino1, J. Shayne Love2, Trevor Haskett3, Gary Clarke4, and Derek Kelly5 

1 Senior Engineer, Motioneering Inc., ron.aquino@motioneering.ca 
2 Technical Director, Motioneering Inc., shayne.love@motioneering.ca  
3 Senior Technical Director, Motioneering Inc., trevor.haskett@motioneering.ca 
4 Senior Project Manager, Motioneering Inc., gary.clarke@motioneering.ca  
5 Principal, RWDI, derek.kelly@rwdi.com  

ABSTRACT 

The wind tunnel study of a super tall and slender skyscraper predicted that occupants may experience 

motion comfort issues during common wind events. As such, a tuned mass damper (TMD) was designed 

and installed inside the skyscraper. A structural monitoring system was subsequently installed to 

continually record bi-axial responses of both the building and the TMD. The monitoring recorded 

building and TMD accelerations during both ambient (calm) and significant wind conditions, with 

maximum gust speeds reaching 77 km/hr at the nearby airport.  Using the ambient data, the natural 

frequencies and, to some extent, the inherent damping of the building were identified even with a TMD 

installed.  Under high wind conditions, the approximated total effective damping and the spectral shape 

of the responses visibly change from the ambient results, indicating that the TMD is functioning as 

designed.  The continuous data recording also captured comparative responses during a series of 

consecutive events wherein the TMD was briefly locked out one morning while gust speeds reached 56 

km/hr.  When the TMD was later released on the same morning, the gust speeds reached a comparable 

57 km/hr from approximately the same direction.  The responses captured were compared with those 

from when the TMD was locked out, indicating the total effective damping introduced by the TMD, 

thus demonstrating its effectiveness. 

Keywords: Super tall building, tuned mass damper (TMD), long-term structural monitoring, 

performance verification, total effective damping 

2



1. INTRODUCTION

1.1. The Study Building 

The Council on Tall Buildings and Urban Habitat (CTBUH) defines a super tall building as one that is 

more than 300 m in height [1]. The construction of one such super tall skyscraper has recently been 

completed.  The building is a very slender tower, as well, with a slenderness (height-to-minimum-width) 

ratio of 16.  A building may be considered slender if the slenderness ratio is higher than 6, which various 

international wind loading codes would treat as very dynamically wind sensitive (e.g. [2]). 

During the design stage, a wind tunnel study was carried out for the building and predicted that 

occupants may experience motion comfort issues during common wind events, and that a supplemental 

damping system (SDS) was needed to increase the total effective damping and meet occupant comfort 

criteria.  Numerous iterations in architectural and structural design followed suit to reduce the wind-

induced responses, and a final design was arrived at and analysed together with the latest wind tunnel 

test data.  Figure 1 shows the results of the latest wind tunnel study without and with proposed SDS, 

wherein a tuned mass damper (TMD) system was selected because it required the least amount of space 

within the building. Note that while the TMD would provide damping sufficient to bring down the 

predicted peak total accelerations to well below criteria under annual and 10-year return period events, 

an additional criterion to reduce monthly accelerations to below 7 milli-g was also included and 

governed the TMD design.  Note that the accelerations shown in Figure 1 are peak total accelerations, 

which were governed by the more dominant North-South tower motion. 

Figure 1. Predicted peak total accelerations from wind tunnel study and initial TMD concept design 

1.2. Tuned Mass Dampers 

A TMD is a mechanical device that absorbs the vibration energy of the building or structure wherein it 

is installed.  Physically, it consists primarily of a large, suspended mass that is tuned to swing at a period 

close to the targeted building period.  It also includes viscous damping devices which convert the 

vibration energy from the building into heat.  Without the TMD, the building would vibrate at higher 

amplitudes than if the properly designed TMD was installed and enabled.  If the building motions were 

higher than standard limits for occupant comfort, building residents might sense these motions and 

potentially file complaints.  The TMD reduces these motions and the frequency of such complaints. 
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Theoretically, TMDs are tuned to an individual vibrational mode of the building.  If a mode of the 

building is represented by a 1DOF (one-degree-of-freedom) system modelled using the target mode’s 

generalized mass, stiffness, and damping coefficient (Figure 2a), then a building with a TMD would be 

equivalent to a 2DOF system with a 2nd DOF representing the TMD’s mass, stiffness, and damping 

coefficient (Figure 2b). Therefore, under random excitation such as wind loading, the expected 

frequency responses would look similar to Figure 3 for the without TMD (1 peak) and with TMD (2 

peaks) cases.  Figure 3 also illustrates a building with a slightly mistuned TMD with one peak 

dominating over the other. 

In some buildings, the TMD may be bi-tuned or tuned to two orthogonal modes.  For the current study 

building, the first two fundamental sway natural frequencies of the building are closely spaced, and thus 

one TMD natural frequency can control both fundamental sway modes (i.e. building X and Y axes).  As 

expected, the TMD frequency is slightly mistuned against one building mode but better tuned against 

the other.  Figure 4 shows the predicted spectral shapes for the modal responses 

Figure 2. (a) 1-degree-of-freedom representation of a building vibration mode, and (b) 2-degree-of-freedom 

representation of building mode and TMD system. 

Figure 3. Theoretical spectral shape of building modal response without TMD, with well-tuned TMD, and with 

slightly mistuned TMD.   indicates ratio of excitation frequency  

Figure 4. Predicted spectral shapes of study building’s responses without and with TMD for (a) Mode 1 (Y-

direction / North-South), and (b) Mode 2 (X-direction / East-West). 

(a) (b) 

(a) (b) 
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2. STRUCTURAL MONITORING

2.1. Set-Up 

A structural monitoring system was installed at the building after the TMD had been installed to 

continually capture responses of both the building and the TMD. The monitoring recorded bi-axial 

building and TMD acceleration data under ambient (calm) wind conditions. It also recorded responses 

during significant wind events corresponding to gust speeds up to 77 km/hr recorded at the nearby 

airport.  The monitoring set-up consisted of two tri-axial MEMS accelerometers (Make: SENSR, 

Model: CX1) connected to a network-enabled data acquisition system that can be accessed remotely for 

data transfer over the Internet. One accelerometer was mounted on the building’s top mechanical floor 

(above the TMD room floor) and the second was mounted on the underside of the TMD itself.  The 

building sensor was aligned such that its +Y axis points toward Project North, consistent with the 

structural axis convention.  Figure 5 shows photos of the monitoring system components. 

Figure 5. Photos of (a) SENSR CX1 accelerometer mounted on bracket attached to structural wall, (b) under-

side of mounting bracket with accelerometer attached to the TMD, and (c) data acquisition unit. 

2.2. Limitations 

With the available measurements, data processing can generate spectral responses comparable to the 

plots in Figure 3, and therefore indicate dominant response frequencies.  Data filtering can isolate the 

first two fundamental sway modes (frequencies and response amplitudes) from higher order mode 

contribution.  Further processing may also allow to estimate the inherent damping in the tower, as well 

as total effective damping that accounts for the supplemental damping provided by the TMD system. 

Having only one sensor on one floor of the building, any system identification or modal analysis carried 

out will not be able to approximate building mode shapes.  Likewise, the torsional modes may not be 

adequately identifiable from the current setup, but are known to exist at frequencies above this range of 

interest from earlier work while commissioning the TMD.  However, mode shapes and torsional 

response are irrelevant for the purposes of this study.  The TMD was designed to address only the sway 

modes.  Additionally, the current study effectively assumes that the structural engineer’s finite element 

model of the tower correctly predicts the fundamental mode shapes of the building.  The general modal 

directions can be identified (e.g. Mode 1 is approximately 20° clockwise from the +Y axis), but for the 

purposes of this paper, the 1st mode is treated as being primarily Y-direction or North-South motion, 

and the 2nd mode as being primarily X-direction or East-West motion. 

(a) (b) (c) 
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3. DATA PROCESSING  

3.1. Preliminary Processing 

As mentioned above, the data was first adjusted so that Y accelerations were aligned North-South and 

X accelerations aligned East-West.  The data was then subjected to a Butterworth bandpass filter from 

0.3 to 0.9 rad/s, effectively removing any low frequency components associated with signal “drift”.  

The time domain data was transformed into the frequency domain using Welch’s method [3], generating 

power spectral density plots corresponding to each data set.  Peak responses were selected from the 

time domain data, while peak frequencies were picked from the spectral density plots.  For the 

discussion in this paper, data from the dates listed in Table 1 were extracted, corresponding to the hours 

with largest wind speeds (except for record #1, which is for calm weather). 

Table 1. Date and time of analyzed data with corresponding wind speed data courtesy of Weather Underground 

Record 

# 

Local  

Date 

Local  

Time 

Peak gust speed 

(km/hr) 

Wind 

direction 
Notes 

1 2021/04/27 00:00-23:59 N/A NW No gustiness reported 

2 2021/04/30 00:00-23:59 74 NW  

3 2021/07/06 16:00-19:00 93 NW Thunderstorm 

4 2021/11/12 07:00-09:00 56 SSE TMD disabled 

5 2021/11/12 09:00-11:00 57 S  

3.2. Results and Discussion 

Table 2 summarizes the peak recorded accelerations from the full filtered time series data for Records 

#1 to #5.  Figure 6 to Figure 10 show the corresponding spectral density plots for Records #1 to #5.   

Table 2. Peak recorded accelerations from filtered time series data 

Record 

# 

Tower Peak Accelerations  

(milli-g) 

TMD Peak Accelerations 

(milli-g) 

E-W N-S E-W N-S 

1 0.4 0.8 0.5 0.8 

2 4.1 7.8 13 20 

3 3.0 7.9 8.8 18 

4 7.6 13 9.7 13 

5 5.0 4.1 14 11 

 

A few expected observations can be drawn from Table 2. First, that building response and an enabled 

TMD’s response both increase with wind speed – except perhaps when the type of wind storm is a 

thunderstorm, which acts differently on structures than “normal” synoptic winds.  Second, wind 

direction has some impact as well on building responses.  Third, that TMD absolute acceleration is 

generally much higher than tower response – except when the TMD is not working, such as under 

“ambient” or very low conditions (Record #1, when TMD internal friction has not yet been overcome) 

or when the TMD is intentionally, temporarily disabled (Record #4).  Record #3 illustrates that the 

TMD is also working somewhat during a thunderstorm.  Lastly but most importantly, the building 

response increases when the TMD is disabled versus when the TMD is enabled, for a given very similar 

wind speed and direction.  This last point suggests that the TMD is functioning as intended. 

Similar observations can be made from Figure 6 to Figure 10.  A correlation can be seen between the 

peak spectral accelerations from these plots and the peak accelerations in Table 2.  Most importantly, it 

can be observed that, for Records #1 (Figure 6) and #4 (Figure 9), the spectral shapes are more similar 

to the “without TMD” spectral shape shown in Figure 4.  Meanwhile, the spectral shapes for Records 

#2, #3, and #5 (Figure 7, 8, and 10, respectively) are very different and better resemble the wider-band 

response for the “with TMD” cases in Figure 4.  Note that Records #1 and #4 show a secondary 

component in the other direction (e.g. there is an E-W component for the N-S-dominant frequency).  
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This is due to the actual building modes not exactly aligned with the building and the accelerometers’ 

X and Y axes.   
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                                                              Frequency (rad/sec)                                                                                      Frequency (rad/sec)     

Figure 6. Power spectral density plots for (a) tower and (b) TMD for Record #1 (full day).  
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Figure 7. Power spectral density plots for (a) tower and (b) TMD for Record #2 (full day).  
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Figure 8. Power spectral density plots for (a) tower and (b) TMD for Record #3 (3 hours).  

 
                   0.3                  0.4                  0.5                 0.6                 0.7                 0.8                       0.3                  0.4                  0.5                 0.6                 0.7                 0.8 
                                                              Frequency (rad/sec)                                                                                      Frequency (rad/sec)    

Figure 9. Power spectral density plots for (a) tower and (b) TMD for Record #4 (2 hours).  
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Figure 10. Power spectral density plots for (a) tower and (b) TMD for Record #5 (2 hours).  

(a) (b) 

(a) (b) 

(a) (b) 

(a) (b) 

(a) (b) 
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Short segments of the time series data are shown in Figure 11 for the recorded Y-direction (N-S) 

component motions of tower and TMD for the 5 records, as an example to illustrate how the tower and 

TMD motions are tracking each other.  Again, similar conclusions can be made as from Table 2 and 

Figure 6 thru Figure 10.  When the TMD is not working during very low wind conditions (Record #1) 

or when the TMD was disabled (Record #4), the tower and TMD motion track each other very closely 

with practically zero phase lag.  Meanwhile, for Records #2, #3, and #5, a visible approximate 90 degree 

phase lag can be observed, which is expected of TMD behaviour within a structure. 

 

 
                                                                            Time                                                                                                            Time 

 
                                                                            Time                                                                                                            Time 

 
          Time 

Figure 11. Short segments of Y-direction (N-S) accelerations of tower and TMD for (a) Record #1, (b) Record 

#2, (c) Record #3, (d) Record #4, and (e) Record #5. 

4. TUNED MASS DAMPER EFFECTIVENESS 

4.1. Estimate of inherent and total effective damping via autocorrelation 

For a structure without a TMD (or with a TMD that is immobile due to friction or lock-out), the 

autocorrelation function of a time series data will yield what is very similar to a free decay response, 

from which the inherent structural damping can be calculated.  However, this is not an acceptable 

approach for a structure equipped with an operable TMD [4].  Instead, the added effective damping that 

the TMD provides to the structure may be computed as [5]:  

𝜁𝑎𝑑𝑑 = 𝜋𝑓𝑠𝜇𝐸[�̈��̇�𝑟]/𝐸[�̈�
2] (1)  

where 𝑓𝑠 is the modal structural frequency, 𝜇 is the TMD-structure mass ratio, �̈� is the tower 

acceleration, �̇�𝑟 is the TMD relative velocity, and 𝐸[ ] denotes the expected value operation.  The total 

effective damping may then be computed as the summation of the inherent structural damping and the 

added effective damping provided by the TMD: 𝜁𝑒𝑓𝑓 = 𝜁𝑠 + 𝜁𝑎𝑑𝑑.   

(c) (d) 

(a) (b) 

(e) 
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Figure 12 shows the generated autocorrelation functions for the two records (#1 and #4) in which the 

TMD was immobile, as well as the free decay envelope associated with the predicted damping ratio, 

which is given by: 

𝐹𝐷𝐸 = ±𝑒−2𝜋𝑓𝑠𝜁𝑠𝑡 (2)  

 

 
           Time                                                                                                    Time 

 

Figure 12. Autocorrelation functions of (N-S) accelerations of tower for (a) Record #1, (b) Record #4. 

 

Table 3. Estimated N-S modal damping ratios 

Record 

# 

Peak Accel.  

(milli-g) 

Estimated 

Damping Ratio 

Peak gust speed 

(km/hr) 
Wind direction Notes 

1 0.8 0.6% N/A NW No gustiness 

2 7.8 2.9% 74 NW  

3 7.9 3.0% 93 NW Thunderstorm 

4 13 0.5% 56 SSE TMD disabled 

5 4.1 4.9% 57 S  

 

 

Table 3 summarizes the estimated damping ratios based on the best-fit FDE curves applied to the 

autocorrelation functions shown in Figure 12, as well as the application of Eq. (1) when the TMD is 

operational.  The inherent structural damping ratio is low (0.5%). When the TMD is operational, the 

damping ratios are considerably higher (2.9%-4.9%).  

4.2. Estimate of total effective damping via response reduction 

Records #4 and #5 have very similar wind conditions, therefore the total effective damping may also 

be estimated by comparing the building response amplitude when the TMD is operational vs. when the 

TMD is immobile according to the relationship: 

𝜁𝑒𝑓𝑓 = 𝜁𝑠 (
𝐷𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝑇𝑀𝐷
𝐷𝑤𝑖𝑡ℎ𝑇𝑀𝐷

)
2

 (3)  

Based on the data for Records #4 and #5 in Table 3, and using an assumed inherent structural damping 

ratio of 0.5%, the total effective damping ratio can be calculated as 5.0%. The independently calculated 

total effective damping ratios are both in agreement with expectations for this TMD design, and confirm 

the TMD will reduce accelerations to acceptable levels for occupant comfort.   
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5. SUMMARY 

The wind tunnel study of a super tall and slender skyscraper predicted that occupants may experience 

motion comfort issues under common wind events.  A tuned mass damper (TMD) was then designed 

and installed in the building.  Subsequently, a long-term structural monitoring system was installed that 

captured building and TMD responses under various wind conditions.  Processing of the monitoring 

data from five example events has revealed that the inherent damping ratio is 0.5%~0.6%.  The analysis 

results also revealed that southerly winds with up to 57 km/hr gusts can allow the TMD to provide a 

total effective damping ratio of approximately 5%, indicating that the TMD is performing as designed.  

The TMD therefore enables the super tall building to achieve occupant motion comfort criteria during 

common wind events. 
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ABSTRACT 

Laminated glass consists of two or more layers of monolithic glass and one or more interlayers of a 

polymeric material, the polyvinyl butyral (PVB) being the most used interlayer material. In the last 

years, the concept of effective thickness was proposed to simplify the calculation of these elements 

subject to static loadings, which consists of using a monolithic model with mechanical properties equal 

to those of the laminated element. However, when laminated glass is subject to dynamic loadings, the 

mechanical properties of the monolithic model have to be defined time and temperature dependent, 

which complicates the use of this technique in numerical models.   

In this paper, expressions for obtaining the modal parameters of a laminated glass beam using a 

monolithic model are presented. On the other hand, a time domain effective stress thickness is defined 

and used to predict the dynamic response of laminated glass beams The proposed techniques are, firstly, 

validated comparing the analytical response of a laminated glass beam with the numerical results 

obtained with numerical model assembled in ABAQUS.  Secondly, the dynamic responses are 

estimated and compared with experimental tests carried out on a laminated glass beam, where the modal 

parameters were estimated with operational modal analysis. 

Keywords: Viscoelasticity, Dynamic Behaviour, Laminated Glass Elements. 

1. INTRODUCTION 

Laminated glass is a layered material that consists of two or more plies of monolithic glass and one or 

more polymeric interlayer material subject to high pressure and temperature in autoclave. All polymeric 

interlayers present a viscoelastic behavior, i.e. their mechanical properties are time and temperature 
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dependent [1, 2]. In analytical and numerical models, glass mechanical behavior is usually modelled as 

linear-elastic whereas the PVB is commonly considered as linear-viscoelastic [3, 4, 5]. 

 

Figure 1: Example of laminated glass in sandwich configuration. 

 

In order to obtain the dynamic behaviour of laminated glass element, a finite element analysis can be 

assembled. However, these methods are high time consuming because the viscoelasticity (time and 

temperature dependence) of the interlayers cannot be considered with modal superposition techniques. 

In the last years, the concept of effective thickness has been proposed to estimate deflections and 

stresses in laminated glass beams using simplified monolithic models which thickness is time and 

temperature dependent [3, 4, 5]  

In this work, expressions and techniques to predict the dynamic response of laminated glass beams are 

presented.  The technique combines the modal parameters and a linear elastic monolithic model. The 

method is validated by analytical and numerical simulation as well as experimentally. 

2. BASIC THEORY 

2.1. Modal Parameters of laminated glass beams 

The natural frequencies ωmon of a monolithic beam with  stiffness 𝐸𝐼𝑚𝑜𝑛 and constant mass per unit 

length are given by: 

𝜔𝑚𝑜𝑛
2 = 𝑘𝐼

4
𝐸𝐼𝑚𝑜𝑛
𝑚𝑚𝑜𝑛

 (1)  

where the wavenumber 𝑘𝐼 is constant for each mode. The  stiffness 𝐸𝐼𝑚𝑜𝑛 is expressed as: 

  𝐸𝐼𝑚𝑜𝑛 = (𝐸𝑏𝐻𝑇𝑂𝑇
3 )/12 (2)  

with b being the width of the beam, HTOT the total thickness and E the Young’s modulus. 

The mass per unit length can be calculated with: 

  𝑚𝑚𝑜𝑛  =  𝜌𝑚𝑜𝑛𝐻𝑇𝑂𝑇 (3)  

where  𝜌𝑚𝑜𝑛 is the mass-density 

The natural frequencies and loss factors of a laminated glass beam can be obtained from the expression 

[6-9]: 

𝜔2(1 + 𝑗𝜂) = 𝜔𝑚𝑜𝑛
𝜌𝑚𝑜𝑛
𝜌

𝐸𝑒𝑓𝑓
∗ (𝜔, 𝑇)

𝐸
 (4)  
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Where the term 𝐸𝑒𝑓𝑓
∗ (𝜔, 𝑇)is an effective frequency domain stiffness [10]:  

𝐸𝑒𝑓𝑓
∗ (𝜔, 𝑇) =

𝐸

1 + 𝑌

(

 1 +
𝑌

1 +
𝐸𝐻1𝑡𝐻2𝑘𝐼

2(𝜔, 𝑇)
𝐺𝑡
∗(𝜔, 𝑇)(𝐻1 +𝐻2))

  (5)  

 

A description of the parameters in Eq. (5) are presented in Appendix. 

With respect de mode shapes, it has been experimentally demonstrated [11] that there are not 

discrepancies between the mode shapes of monolithic beam and a laminated glass beam with same 

geometry and boundary conditions, i.e: 

𝜓 ≅ 𝜓𝑚𝑜𝑛 (6)  

where 𝜓  and 𝜓𝑚𝑜𝑛 are mode shapes  normalized to the largest component equal to unity. 

2.2. Dynamic response in Time Domain 

In structural dynamics, the responses of the system can be decomposed in terms of modal coordinates 

using the mode superposition method, i.e. [12]: 

𝑤(𝑥, 𝑡) = ∑ 𝜙𝑖(𝑥)𝑞𝑖(𝑡)

𝑁𝑚𝑜𝑑𝑒𝑠

𝑖=1

 (7)  

Where 𝜙𝑖(𝑥) and 𝑞𝑖(𝑡, 𝑇) are the i-th mode shape and the i-th modal coordinate, respectively. For a 

laminated glass beam, the maximun stresses in the glass layers can be obtained with the following 

expressions [7, 13]:   

𝜎1(𝑥, 𝑡, 𝑇) ≅
𝐻1
2
∙ ∑ 𝐸1𝜎𝑖(𝑇) ∙ 𝜙𝑖

′′(𝑥) ∙ 𝑞𝑖(𝑡, 𝑇)

𝑁𝑚𝑜𝑑𝑒𝑠

𝑖=1

 (8)  

Whereas the stresses at the bottom of layer 3 are obtained from: 

𝜎2(𝑥, 𝑡, 𝑇) ≅
𝐻2
2
∙ ∑ 𝐸1𝜎𝑖(𝑇) ∙ 𝜙𝑖

′′(𝑥) ∙ 𝑞𝑖(𝑡, 𝑇)

𝑁𝑚𝑜𝑑𝑒𝑠

𝑖=1

 (9)  

Where 𝐸1𝜎𝑖(𝑇) and 𝐸2𝜎𝑖(𝑇) are constant time domain stress effective Young modulus [7], which are 

dependent on the geometry and the mechanical properties of the glass and the interlayer [14]. These 

time domain stress effective Young modulus can be obtained with the equations: 

𝐸1𝜎𝑖(𝑇) = 𝐸1𝜎𝑒𝑓𝑓(𝜔𝑖, 𝑇) (10)  

𝐸2𝜎𝑖(𝑇) = 𝐸2𝜎𝑒𝑓𝑓(𝜔𝑖, 𝑇) (11)  
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where 𝜔𝑖 is the natural frequency of the i-th mode, and  𝐸1𝜎𝑒𝑓𝑓(𝜔𝑖, 𝑇) and  𝐸2𝜎𝑒𝑓𝑓(𝜔𝑖, 𝑇) are frequency 

domain effective Young modulus whose expressions can be retreived from literature [9]. 

If the experimental modal parameters of the beam (natural frequencies, mode shapes and damping 

ratios) are known, i.e. by modal analysis, and the experimental response time histories 𝑤(𝑥, 𝑡) are 

measured at several points of the structure, the vector of experimental modal coordinates {qx(t, T)} can 

be estimated by: 

{𝑞𝑥(𝑡, 𝑇)} = [𝜙𝑥]
−1{𝑤𝑥(𝑡, 𝑇)} (12)  

Where subscript ‘x’ indicates experimental data, [𝜙𝑥(𝑥)]
−1represents the inverse matrix of the 

experimental mode shapes and {𝑤𝑥(𝑡, 𝑇)} the vector of experimental responses.  If Eq. (12) is 

substituted in Eqs. (8) and (9), the stresses at any point of the layer 1 can be obtained with the expression 

[13]: 

𝜎1(𝑥, 𝑡, 𝑇) ≅
𝐻1
2
∙ ∑ 𝐸1𝜎𝑖(𝑇) ∙ 𝜙𝑥𝑝𝑖

′′ ∙ 𝑞𝑥𝑖(𝑡, 𝑇)

𝑁𝑚𝑜𝑑𝑒𝑠

𝑖=1

 (13)  

and at the bottom of layer 3 with: 

𝜎2(𝑥, 𝑡, 𝑇) =
𝐻2
2
∙ ∑ 𝐸2𝜎𝑖(𝑇) ∙ 𝜙𝑥𝑝𝑖

′′ ∙ 𝑞𝑥𝑖(𝑡, 𝑇)

𝑁𝑚𝑜𝑑𝑒𝑠

𝑖=1

 (14)  

Where 𝜙𝑥𝑝𝑖
′′  are the experimental mode shapes expanded to the unmeasured DOF’s using one of the 

techniques proposed in the literature [15].  

3. EXAMPLES OF APPLICATION IN A LAMINATED GLASS BEAM 

3.1. Modal parameter of a laminated glass beam 

In order to validate the technique proposed in this paper, the modal parameters of a simply supported 

laminated glass beam, made of annealed glass layers, PVB core and with the following geometrical 

data: L = 1 m, H1 = 4 mm, t = 0.76 mm, H2 = 4 mm, b = 0.1 m, were predicted at  25𝑜𝐶   using Eq. (4) 

and validated with a numerical model assembled in ABAQUS. 

As a first step, two numerical models were assembled using available mechanical properties for glass 

and PVB [14]. The details of the models used are: 

 A simply supported monolithic glass model with thickness 𝐻𝑇𝑂𝑇 = 𝐻1 + 𝑡 + 𝐻2 =  8.76 𝑚𝑚.. 

The beam was meshed using quadratic hexahedral elements (20 nodes per element) with an 

approximate size of 4 mm.  

 

 A layered model with glass layers modelled as linear elastic and the PVB interlayer model as 

linear viscoelastic, was also meshed using 3 quadratic hexahedral elements through the beam 

thickness (one element for each material layer). 

 

The natural frequencies ωmon, corresponding to the first four bending modes of the monolithic model, 

were obtained solving the eigenvalue problem, and the results are presented in Table 1 for a 

temperature of 25oC. The wavenumbers 𝑘𝐼   were estimated from the monolithic model using Eq. (1). 
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The natural frequencies and the corresponding loss factors were estimated from the frequency response 

function (FRF), which was isolated around the peaks of resonance and taken to the time domain using 

the Inverse Discrete Fourier Transform (IDFT). The resonance frequency is obtained by determining 

the zero crossing times, and the damping by the logarithmic decrement of the corresponding free decay. 

The predicted natural frequencies and loss factors at 25ºC are shown in Tables 1, respectively. 

 

Table 1. Modal parameters at 25º C. 

Mode 

Monolithic glass beam  Laminated glass beam 

Nat. freq   Nat. freq  Loss factor   

[Hz]   Eq. (4) FEM Visco  Eq. (4) FEM Visco    

1 21.31   21.60 21.62  0.0154 0.0157    

2 85.24   85.86 84.95  0.0305 0.0306    

3 191.72   186.49 186.81  0.0497 0.0488    

4 340.48   323.81 324.50  0.0683 0.0715    

 

From Table 1, it is concluded that the modal parameters have been predicted with a good accuracy. 

Although damping estimation in laminated glass panels using Eq. (13) are not accurate, in this particular 

case (simply supported beam) kR = 0 for all the modes (which is the assumption considered for deriving 

Eq. (4)), which explains the large precision of the predictions. 

3.2. Stresses estimation in a laminated glass beam under impact loading 

3.2.1 Modal Analysis 

A laminated glass beam was used in the experiments. The dimensions of the beam were 1000 mm x 

100 x 6.38 mm, being the thicknesses of glass 𝐻1 and 𝐻2 three milimeters and the thickness of PVB 

interlayer 𝑡=0.38 mm. The total mass of the beam was 1.544 kg. The beam was clamped at both ends 

between rubbery bands in a glass standard impact frame [16] (see Figure 2).  

The modal parameters of the beam were experimentally determined by operational modal analysis at 

22 ºC.  The responses of the beam were measured with 7 accelerometers with a sensitivity of 10 mV/g  

which were uniformly distributed along the beam and seven strain gages using a sampling frequency of 

2132 Hz (see Figure 2), the test duration being approximately 2 minutes. The modal parameters were 

estimated in the frequency domain using the ARTEMIS Modal Pro software. The singular value 

decomposition of the experimental responses is presented in Figure 3. The first five experimental 

natural frequencies and the corresponding damping ratios are presented in Table 2. The mode shapes 

for the beam are those presented in Table 2. 

 

Figure 2. Experimental set-up for the laminated glass beam (distances in cm). 
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Figure 3. Singular value decomposition of the spectral densities for the OMA in the beam. 

3.2.2 Impact tests 

The beam was also subjected to an impact test using an impact hammer with a medium stiffness head 

and the additional mass of 75 grams. The response of the beam was measured with the same 

configuration used in modal analysis tests (Fig. 2).  

Table 2. Modal parameters of the laminated glass beam. 

Mode 
Natural frequencies 

[Hz] 

Exp. 

Damp. 

[%] 

Experimental mode Shape 

1 30.16 4.28 
 

2 92.70 3.23 

 

3 186.49 2.92 

 

4 313.41 2.89 

 

5 465.53 2.82 
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3.2.3 Analytical Predictions  

From the experimental responses and the experimental mode shapes, the modal coordinates were 

estimated using Eq. (12). Then, the experimental mode shapes were expanded using a monolithic 1D 

finite element model of the beam assembled in ABAQUS. In order to take into account the effect the 

rubbery at the supports, the finite element model was updated with elastic fixed supports. 

 

The stresses at the midpoint of the bottom of layer 𝐻2 , predicted with Eq. (14) is presented in Fig (4) 

together with those obtained with the strain gage at the same point.  The effective Young modulus 

𝐸2𝜎𝑖(𝑇) at temperature 𝑇 = 22𝑜𝐶  was calculated with Eq. (11) [7].  

It can be observed that the calculated stresses are predicted with an error less than 6 % demonstrating 

that a reasonable good accuracy can be obtained with this technique.  

 

 

Figure 4. Predicted and experimental stresses for a laminated glass beam under soft impact loading (mid-point). 

 

4. CONCLUSIONS 

 In this paper, a methodology to predict the dynamic response of laminated glass elements using 

a linear-elastic monolithic model, has been proposed and validated. 

 The method for obtaining the dynamic responses was also validated comparing the stresses 

estimated on a laminated glass subjected to an impact loading. The errors between the two 

models are less than 6%, which demonstrates that the technique can be used to predict with a 

good accuracy the dynamic response of laminated glass elements. 
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Appendix 
 

List of Parameters and Symbols 

𝐻0 = 𝑡 + (
𝐻1 +𝐻2
2

) 

𝑌 =
𝐻0
2𝐸1𝐻1𝐸2𝐻2

𝐸𝐼𝑇(𝐸1𝐻1+𝐸2𝐻2)
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𝐼𝑇 = 𝐼1 + 𝐼2 =
𝐻1
3 +𝐻2

3

12
 

𝐼1 =
𝐻1
3

12
 

𝐼2 =
𝐻2
3

12
 

𝐸   Young’s modulus of glass layers  

𝜌   Mass-density of the glass layers.   

𝐺𝑡
∗(𝜔)  Complex shear modulus for the polymeric interlayer 

 𝑘𝐼
2(𝜔, 𝑇) Wavenumber of the beam  
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ABSTRACT 

This paper describes how the modal properties of dams can be identified by ambient vibration tests and 

modal analysis. For this purpose, a typical concrete dam in the Province of British Columbia, Canada 

was selected and subjected to a series of ambient vibration measurements. Modal response analysis was 

then performed to identify the dynamic properties of the structure, including predominant natural 

frequencies and the corresponding mode shapes to support seismic assessment and upgrading of the 

dam. The testing program consisted of several setups on multiple locations of the structure including 

crest, piers, spillway ogee, hoist structure and abutments. Tromino® velocity/acceleration wireless 

sensors were used for the measurements which were placed on predetermined locations as planned. The 

computer program ARTeMIS was used to perform the system identification of the structure. The 

software allows to develop a 3D model of the structure and test points; the resulting mode shapes are 

displayed using this geometry. Two different techniques were used for modal identification: the 

Enhanced Frequency Domain Decomposition (EFDD) and the Stochastic Subspace Identification (SSI). 

These two modal identification techniques were used to cross-validate the results. The joint analysis of 

the signals measured in various strategic points of the structure made it possible to identify the modal 

configurations and the corresponding natural frequencies. As the results of this study, the vibration 

modes of the dam in upstream-downstream and cross-canyon directions, as well as the motions of the 

hoist structure were discussed. Also, the natural frequencies and corresponding dynamic mode shapes 

were presented. 

Keywords: Ambient vibration tests, Modal analysis, Dams, Modal frequencies, Mode shapes. 
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1. INTRODUCTION 

Ambient Vibration Test (AVT) technique has been employed for structural system identification during 

past decades and is growing very fast recently [1 and 2]. This paper also describes a series of AVTs 

conducted at a selected concrete dam in the province of British Columbia, Canada in order to determine 

the modal frequencies and the mode shapes of the dam. Prior to the AVTs, a site visit to the dam was 

conducted to determine the location of the measurements and develop a test plan. The test plan included 

measurements at the crest of the dam, at the galleries inside the dam, and on top of the concrete piers.  

The selected dam is located on a river, and holds back the dam lake, also known as a reservoir, for 

storing a portion of the drinking water. The selected dam is a concrete structure consisting of a 

reinforced concrete wall and a spillway concrete bridge at the crest supported by a buttress concrete 

section. The concrete dam is about 189 m wide in the cross-canyon direction.  The height varies from 

92.1 m at the river valley location to 21 m at the east side and west side abutments. The roadway crown 

is located at elevation of 148.93 m.  

The central section of the dam comprises a concrete deck and buttress structure. It contains a 24.4 m 

wide overflow spillway bay.  The crest of the dam (top of parapet walls) is located at elevation of 150.38 

m. At the west and east ends, the concrete structure is connected to the bedrock at the sides of the valley 

by two core walls. The transition blocks transfer the lateral load from the water reservoir and any lateral 

seismic loads from the concrete structure to the bedrock foundation.  

Figure 1 shows a satellite view of the selected dam and Figure 2 illustrates the plan view of the dam. 

 

 

Figure 1. Satellite view of the dam (Source: Google Map). 

 

  
 Figure 2. Drawings of the selected dam: Plan view (Source Metro Vancouver). 

N 
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2. AMBIENT VIBRATION TESTS 

The Ambient Vibration Tests (AVT) were conducted at a selected dam in order to determine the 

dynamic modal properties (modal frequencies and mode shapes) of the dam. The starting and ending 

time of the test setups, number of the sensors in each setup, recording time for each setup, and the 

reservoir level at the time of the ambient vibration tests and also the average temperature at the time of 

the tests are presented in Table 1. 

 

Table 1: Test information for each setup. 

 Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6 Setup7 

Date of the Test 17 April 2018 11 May 2018 

Time of the Test 11:06:32 12:11:31 12:53:13 8:26:17 9:31:56 10:38:50 12:36:36 

No. of the Sensors 8 8 8 7 7 4 4 

Recording Duration 

(min.) 
40 32 32 40 40 40 30 

Temperature (C)  9 11 13 12 13 14 17 

Reservoir Level (m) 144.91 144.90 

 

Tromino® velocity/acceleration sensors were used to carry out these AVTs [3]. The collected records 

were time synchronized with a radio antenna and amplifier in each sensor. This allowed the 

synchronization of the recordings both within each measurement setup and between setups. The 

Tromino sensors are suitable for high-resolution ambient vibration tests as they are fully portable, 

wireless, compact, and light instruments. Each sensor is equipped with two sets of three orthogonal 

high-resolution electrodynamics sensors (high gain and low gain velocity meter) and one set of three 

orthogonal digital accelerometers with a frequency range of 0.1 to 300 Hz.  For these tests the high-

gain velocity data was used for the modal identification process. 

The testing program consisted of seven measurement setups: three linear arrays (at about 10 m spacing) 

of eight sensors on the top of the crest of the dam (setups 1, 2, and 3); an array of seven sensors inside 

the upper gallery at west side (Setup 4); an array of seven sensors inside the east side of upper gallery 

and the intermediate gallery (Setup 5); one set of four sensors inside the lower gallery (Setup 6); and 

one setup of four sensors at top of the piers (Setup 7). Figures 3 and 4 show the schematic upstream and 

downstream elevation of the dam and the location of the measurement setups at the crest and inside the 

galleries. One stationary reference sensor was used for all setups (Shown in Figures 3 and 4).  

The first three setups are shown in Figure 5-a and provided data to determine the global dynamic 

response of the dam at the crest level. Sensors S5, S6, and S7 of setup 2 were located on top of the 

bridge and were not used for modal analysis of the dam. Instead, the readings from setup 7 were used 

to verify the predominant frequency of the dam. In this setup, Sensor S3 was placed on top of the bridge 

and was used only for radio communication between sensors and the data extracted from this sensor 

was not used for modal identification of the dam. Figure 5-b and 5-c show the setups 6 and 7 inside the 

lower gallery and on top of the piers, respectively.  

The sampling frequency of the recordings at each setup was 512 samples per second (sps), and the total 

recording duration for each setup was about 30 to 40 minutes. This testing approach allows to capture 

the most important vibration modes up to a frequency of about 256Hz. The north component of each 

sensor has been oriented perpendicular to crest canyon direction of the dam for all of the measurement 

setups (Figure 5).  
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Figure 3: Upstream elevation of the dam and location of measurement setups on the crest (Setup 1, 2, and 3), 

and location of sensors on the concrete piers (Setup 7). 

 

Figure 4: Downstream elevation of the dam and location of sensors on the crest, and location of measurements 

setup inside the galleries (Setup 4, 5 and 6). 

 

         
(a)                                                       (b)                                                   (c) 

Figure 5: Location of sensors: a) at the crest (setup 3); b) Lower gallery (Setup 6); c) Top of the piers (Setup 7). 
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3. METHODOLOGY AND DATA PROCESSING 

The computer program ARTeMIS version 4 [4], was used to perform the modal identification of the 

dam. The software allows the user to develop a 3D model of the structure and test points; the resulting 

mode shapes are displayed using this geometry. Two different, complementary techniques are usually 

used for modal identification [5]: the Enhanced Frequency Domain Decomposition (EFDD) and the 

Stochastic Subspace Identification (SSI). These two modal identification techniques are used to cross-

validate the results. The joint analysis of the signals measured in various strategic points of the structure 

makes it possible to identify the modal configurations and the corresponding natural frequencies. 

The EFDD technique is an enhanced frequency domain method and the procedure consists of 

decomposing the system output into a set of systems of a specific degree of freedom, which are 

independent for each mode. The singular values are estimated from the spectral density of the specific 

degree of freedom system and the configuration of the modes is estimated from the singular vectors by 

selecting the highest peaks of the responses.  

The SSI technique is a time domain method which consists of adjusting a parametric model to the time 

series recorded by the sensors. SSI method takes a matrix of the time history data, and performs a series 

of geometric manipulations which results in a set of mathematical models that represent the system that 

produces the data; the analysis provides modes based on those models.  The advantage of the SSI is 

more accurate modal estimations, especially in the lower frequencies when the data is properly 

decimated. The disadvantage is that the SSI method takes a considerable amount of time for analysis, 

and is not easily applied to broadband data. In contrast, the FDD method is very quick and allows for 

the user to picks modes anywhere in the frequency range of interest.  

Ambient vibration data recorded on and off the dam contains both noise and the response of the dam 

under ambient vibrations. The noise component of the recorded data is mainly due to mechanical 

imperfections in the sensors, instrument noise, installation, and other aspects in the sensor such as 

digitalization. The noise components of the vibration data, by its nature, usually appear as a random 

phenomenon in the data; however, the response of the dam is not random, but consistent at certain 

frequencies due to resonance effects of the dam to environmental excitations. Removing the noise 

components from the data is generally achieved by using signal processing tools such as decimation, 

filtering, and data averaging. 

The data collected at all measurement locations on the crest, inside the galleries, and top of the piers 

was processed and analysed with ARTeMIS Modal. A 3D model (for animation purposes only) of the 

dam was created using the structural geometry. The model includes the discretized locations of 37 

measurement points on the crest of the dam and inside the galleries including the reference and roving 

sensors as seen in Figure 6. The blue arrows represent the location and orientation the of reference 

sensor for setups 1 to 7, while the green and pink arrows represent the location and orientation of the 

roving sensors. This estimation would be correct since the readings from all of the sensors had been 

fully synchronized. Therefore, this method would provide a reliable estimation of a mode shape.  

 

 
 

Figure 6: 3D ARTeMIS model showing the locations of the measurement points at the crest and the galleries of 

the dam (Only measurements conducted in the North-South direction are shown for simplicity). 
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4. TEST RESULTS 

The results of the analysis using the Enhanced Frequency Domain Decomposition method (EFDD) are 

shown in Figure 7. This figure shows a plot of the spectral density of the peak singular values of all the 

data from setups 1 to 7 as a function of frequency.  The peak values in this plot can be associated to 

dominant frequencies in the datasets, and some of these correspond to modal frequencies. Since the data 

is only from the crest of the dam and the galleries in limited locations, some of the peaks may be 

associated to local or higher order modes. However, the results of the analysis of the data using the SSI 

method can be used to determine with greater certainty the most dominant frequencies in the dataset. 

Figure 8 shows the Stabilization Diagram of all the data from setup 1. The vertical red dotted lines 

indicate the frequencies at which the modal frequencies are stable and can be associated to natural 

modes of the structure.  By combining the results from both methods, it is possible to determine what 

of the peaks in Figure 7 are associated to modal frequencies of the dam [5]. 

Based on this analysis, the predominant frequency (the first natural frequency) of the structure is 

estimated to be 9.29 Hz, and it corresponds to the fundamental mode of the dam in the upstream-

downstream direction. The corresponding mode-shape is shown in Figure 9. The second modal 

frequency is at 13.09 Hz, and it corresponds to a mode of the dam in the upstream-downstream direction, 

as shown in Figure 10. Frequencies of some of the higher order modes (third and fourth modes) of the 

dam were also identified as 19.71 and 21.30 Hz. 

 

 

Figure 7: Singular Values of Spectral Densities of all test setups in the frequency range of 0 to 30 Hz using 

EFDD. 

 

Table 2 summarizes the modal frequencies extracted from the vibration data for which the confidence 

on the results is high from both the EFDD and SSI-UPC methods. Figures 11 and 12 show the third and 

fourth mode of the dam corresponding to 19.71 Hz and 21.30 Hz, respectively. 

 
Table 2: Modal frequencies obtained from modal analysis estimated by EFDD and SSI methods (Hz). 

 EFDD Method SSI – UPC Merged Method 

1st Mode 9.31 9.26 

2nd Mode 13.06 13.11 

3rd Mode 19.75 19.67 

4th Mode 21.31 21.29 
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Figure 8: Stabilization Diagram of Estimated State Space Models from all the data in setup 1. This plot is for 

the Unweighted Principal Components (UPC)-Merged Test Setups in the frequency range of 0 to 30 Hz. 

 

 

Figure 9: First mode shape of the dam in upstream-downstream direction (f=9.31 Hz) – Quad view. 
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Figure 10: Second mode shape of the dam in upstream-downstream direction (f=13.06 Hz) - Quad view. 

 

 

Figure 11: Third mode shape of the dam in upstream-downstream direction (f=19.75 Hz) - Quad view. 
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Figure 12: Forth mode shape of the Dam in upstream-downstream direction (f=21.31 Hz) - Quad view. 

 

Different modal identification techniques were used to identify the modes of the dam. The results were 

cross-validated in terms of frequencies and mode shapes [5]. Figure 13 presents a validation diagram 

of the results. This diagram shows the Modal Assurance Criterion values of the estimated frequencies 

by EFDD and SSI-UPC Merged methods. This comparison validates the existence of the predominant 

frequency at 9.29 Hz, which was obtained from all setups (Table 3).  

 

 

Figure 13: Validation diagram of the results; Modal Assurance Criterion Values for EFDD and SSI-UPC 

Merged methods. 

5.  CONCLUSIONS 

A series of ambient vibration tests was conducted on a selected dam in April 2018. The testing program 

consisted of seven measurement setups using wireless digital seismometers: three of these were linear 

arrays on top of the crest of the concrete dam; another setup was an array inside the upper gallery; 

another setup was an array inside the intermediate gallery; and eight single-sensor measurement located 
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inside the galleries of the concrete dam. Vibration of the dam was recorded for approximately 30-40 

minutes for each setup.  

The results from the modal analyses indicated that the fundamental frequency of the dam in the 

upstream-downstream direction is 9.29 Hz. The frequencies corresponding to second, third and fourth 

modes of vibration of the dam are 13.09 Hz, 19.71 Hz and 21.30 Hz, respectively. The identified 

frequencies and periods of the dam are also summarized in the Table 3. The main direction of the 

associated mode shapes is included in the table. 

 

Table 3: Summary of modal periods obtained from the ambient vibration tests. 

Mode # Frequency (Hz) Period (Sec.) Mode & Direction 

1 9.29 0.108 1st Upstream – Downstream 

2 13.09 0.076 2nd Upstream – Downstream 

3 19.71 0.051 3rd Upstream – Downstream 

4 21.30 0.047 4th Upstream – Downstream 
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ABSTRACT
In frequency domain experimental modal identification, the main goal is to extract the modal properties
from the measured transfer function or power spectral densities. The modal parameter estimation can
be carried out in a Linear Least Squares (LLS) sense by means of parametric identification methods.
When the accuracy of such estimates is not accurate enough, non-linear identification methods based on
Maximum Likelihood (ML) can by employed to improve precision of the LLS estimates in an iterative
manner. One the main advantages of the ML-based optimization techniques is that, apart from providing
more accurate estimates, they are also capable of estimating the uncertainties on the optimized estimates
if the noise information is also taken in account in the optimization process. In this paper, the perfor-
mance of a new frequency-domain ML-based technique formulated in Z-domain modal is investigated
by means of a simulated example.

Keywords: Maximum Likelihood, Non-Linear Least Squares, Modal Identification, Modal Parameter
Estimation, Frequency Domain, Modal Analysis, Identification Technique

1. INTRODUCTION

When it comes to Experimental and Operational Modal Analysis (EMA and OMA) the main challenge
is the extract the physical properties of the dynamic system being tested from the measured vibration data.
The vibration properties’ estimation can be carried either in time or in frequency domain using the so-
called parametric identification based on Linear Least Squares model (LLS) fitting. Several identifica-
tion methods exist for this purpose as, for instance, the poly-reference Least Squares Complex Frequency
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Domain (pLSCF) [1] formulated in frequency domain and the Stochastic System Identification (SSI) al-
gorithms developed to estimate the modal parameters from the measured responses [2], the Ibrahim Time
Domain (ITD) [3, 4] and the poly-reference Least Squares Complex Exponential (pLSCE) (also known
as LSCE-Prony) [5, 6].

It turns out that, in some circumstances, the accuracy of the LLS methods is not good enough due
several sources of errors such as noise and estimation errors. In these circumstances, the Non-Linear
Least Squares (NLLS) techniques such as those based in Maximum Likelihood (ML) can be employed
to iteratively improve the accuracy of LLS estimates for the modal properties. The underlying idea of
the NLLS identification with the ML-based approaches is to use the estimates from a LLS technique as
a starting guess to iteratively improve their accuracy by minimizing the cost function computed from the
difference between the measure data and model synthesized from the estimates obtained in each iteration.
In the case of ML-based methods, this is achieved by making use of the so-called Gaussian-Newton
algorithm in combination with the Levenberg–Marquardt [7] approach to prevent the cost function to
converge to local minima.

In [9–11] a frequency domain ML estimator is introduced to iteratively optimize the invariants of the
Frequency Response Function (FRF) in Laplace-domain, i.e., the mode shape vectors, continuous time
poles, modal participation factor vector and out-of-band residuals. The idea behind this approach is to
use the estimates from a previous LLS Modal Parameter Estimation (MPE) as starting guess. Then,
after performing some Gauss-Newton iterations, the ML-based approach yields the optimized estimates.
Afterwards, the authors formulated another ML-based technique in Laplace-domain to optimize the
LLS modal properties in the cases where reciprocity in considered [12]. One of the main advantages
of the ML-based MPE algorithms is that it considers both the measured vibration data and the noise
information in the optimization process. Therefore, apart from providing optimized estimates for the
modal properties, they also compute the confidence bounds for these estimates.

In this paper, an initial performance assessment of a new ML-based estimator is presented. The ML
estimator herein introduced is formulated in z-domain Modal Model, hence the acronym ML-ZMM.
Differently from the ML-MM described in [9, 10], the ML-ZMM aims at improving the estimates for
the discrete-time poles after some Gauss-Newton iterations, rather than the continuous-time poles. Apart
from assessing the ability of providing optimized estimates for the natural frequencies and damping
coefficients, the robustness in predicting confidence bounds for this properties is also evaluated in this
paper.

2. DERIVATION OF THE ML-ZMM

Once the modal parameters are estimated with a LLS algorithm, they can be optimized by means of
the Maximum Likelihood algorithm formulated using the modal model in z-domain. If displacement
responses are measured during the vibration test, the FRF matrix H(z) ∈ CNo×Ni with Ni inputs and
No outputs is modeled in z-domain by

H(z) =

Nm∑
m=1

ϕmlTm
z − µm

+
ϕ∗
mlHi

z − µ∗
m

(1)

with Nm denoting the number of vibration modes, µm ∈ C, ϕm ∈ CNo×1, lm ∈ CNi×1 stand for the
discrete-time poles, mode shape and the operational factor vectors corresponding to the mth vibration
mode; z = ejω∆t is the z-domain variable, with j =

√
−1 denoting the imaginary unit and ω = 2πf is

the angular frequency, where f designates the frequency in cycles per second (Hertz); and the operators
(•)∗ and (•)H denote the conjugate and Hermitian of a complex matrix, respectively. The continuous-
time poles, λm ∈ C, are related to their discrete-time counterparts as µm = eλm∆t, with ∆t ∈ R
standing for the sampling interval. The poles λm occur in complex-conjugated pairs and are related to
the eigenfrequencies ωnm and damping ratios ξnm as:
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λm, λ∗
m = −ωnmξnm ± j

√
1− ξ2nm

ωnm (2)

Compared to conventional LLS-based approaches, ML-based algorithms have the advantage of taking
into account not only the measured FRFs, but also the noise information during the parametric identi-
fication process, and thus, apart from providing the optimized estimates of modal parameters, they also
yield the confidence intervals of these estimates. The optimization of the starting parameters with the
ML-ZMM is accomplished by minimizing the following (negative) log-like cost function

No∑
o=1

Nf∑
f=1

l(Θ)ML−ZMM = Eo(Θ, zf )E
H
o (Θ, zf ) (3)

with Nf the number of frequency lines, zf = ejωf∆t the z-domain variable evaluated at frequency line f
and Eo(Θ, zf ) the row vector error between the measured and the estimated FRF for the oth measured
output, which is calculated as:

Eo(Θ, zf ) =

(
Ĥo1(Θ, zf )−Ho1(zf )

σHo1(zf )
. . .

ĤoNi(Θ, zf )−HoNi(zf )

σHoNi
(zf )

)
(4)

where Ĥo(Θ, zf ) ∈ C1×Ni , Ho(zf ) ∈ C1×Ni and σHo(zf ) ∈ R1×Ni are the oth row of the FRF in modal
model formulation (1), and of the measured FRF and its corresponding standard deviation, respectively.
The parameter Θ is a column vector with all the parameters to be optimized by means of the Gauss-
Newton Newton algorithm and is given by:

Θ =
[
θ1 θ2 · · · θNo θLµ

]T ∈ R2Nm(Ni+No) (5)

with

θLµ =
[
θL θµ

]
∈ C2NmNi (6)

The parameter θo ∈ C2Nm is a vector with the real and imaginary parts of the mode shape ordinates
corresponding to the oth output, given by

θo =
[
Re (ϕo1) Re (ϕo2) · · · Re (ϕoNm) Im (ϕo1) Im (ϕo2) · · · Im (ϕoNm)

]
∈ R2Nm (7)

where Re (•) and Im (•) stand for the real and imaginary parts of a complex number. The parameters
θL ∈ R2Nm(Ni−1) and θµ ∈ C2Nm in eq. (6) are columns vectors containing, respectively, the real and
imaginary parts of all the operational factors elements, and the real and imaginary parts of the discrete-
time poles. These parameters are defined, respectively, as:

θL =

[
Re (L11) · · · Re (LNk1) Re (L11) · · · Im (LNk1) · · ·

· · · Re (L1Nm) · · · Re (LNkNm) Re (L1Nm) · · · Im (LNkNm)

]
(8)

and
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θµ =
[
Re (µ1) Re (µ2) · · · Re (µNm) Im (µ1) Im (µ2) · · · Im (µNm)

]
∈ R2Nm (9)

where Lkm ∈ C is the kth element of the operational factor vector of the mth vibration mode lm ∈
CNi×1, with k = 1, 2, · · · , Nk, and Nk = Ni − 1, which means that only the operational factors that
differ from 1 are optimized by the algorithm during the performed iterations. As the identified operational
factors are normalized with regard to the maximum element of each mode in the identification with the
pLSCF, the derivatives of the elements that equals 1 are not evaluated and, therefore, are not included in
the vector defined by eq. (8). In fact, this works like a constraint, since the operational factors elements
that equal 1 are not updated during the minimization of the cost function (3). The maximum likelihood
optimization of the parameters Θ is accomplished by minimizing the cost function (3) in a non-linear
least squares sense. This is performed by means of the Gauss-Newton optimization algorithm combined
with Levenberg–Marquardt approach [7], which forces the cost function to decrease with the performed
iterations. The Gauss-Newton iteration is basically divided in two steps:

1. Solve the normal equations

JH
i Jivec(∆Θi) = −JH

i Ei for vec(∆Θi). (10)

2. Compute an update of the previous solution

Θi+1 = Θi +∆Θi (11)

where vec(∆Θi) ∈ R2Nm(No+Ni) is the perturbation on the modal parameters, Ei is the error between
the measured quantity and the parametric model (i.e. FRF equation in z-domain modal model formu-
lation (1)), Ji is the Jacobian matrix evaluated at the ith iteration, and the vec(•) stands for the column
stacking operator. The equation error calculated at the ith iteration Ei = E(Θi) is given by

Ei =


vec(E1(Θi))
vec(E2(Θi))

...
vec(ENo(Θi))

 ∈ RNfNoNi×1, Eo(Θi) =


Eo(ω1, Θi)
Eo(ω2, Θi)

...
Eo(ωNf

, Θi)

 ∈ RNf×Ni (12)

and the corresponding Jacobian matrix by

Ji =
[
∂E(Θi)
∂Θi

]
∈ RNfNoNi×2Nm(No+Ni) (13)

with Θi representing the parameters given by eq. (5) at the ith iteration. This matrix has the following
structure:

J =


Y1 0 · · · 0 X1

0 Y2 · · · 0 X2
...

...
. . .

...
...

0 0 · · · YNo XNo

 (14)

where Xo is a matrix with the derivatives of the equation error (4) with regard to the discreet-time poles
and operational factors, and Yo is a matrix with the derivatives with respect to the mode shapes. The
matrix Xo is computed as:

34



Xo =
[
XL Xµ

]
(15)

where the entries XL and Xµ are sub-matrices containing the derivatives of the equation error (4) with
respect to the real and imaginary of the operational factors, real and imaginary parts of the discreet-time
poles, respectively. The sub-matrix XL is computed as:

XL =
[
XL1 XL2 · · · XLNm

]
(16)

with XLm containing the derivatives of the equation error with respect to the real and imaginary parts of
the elements of the operational factor of the mth mode. The sub-matrix Xµ is calculated as:

Xµ =

[
vec

{
∂Eo(Θ)
∂Re(µ1)

}
· · · vec

{
∂Eo(Θ)

∂Re(µNm )

}
vec

{
∂Eo(Θ)
∂Im(µ1)

}
· · · vec

{
∂Eo(Θ)

∂Im(µNm )

}]
(17)

The sub-matrices XLm in eq. (16) are defined by

XLm =

[
vec

{
∂Eo(Θ)

∂Re(L1m)

}
· · · vec

{
∂Eo(Θ)

∂Re(LNkm)

}
vec

{
∂Eo(Θ)

∂Im(L1m)

}
· · · vec

{
∂Eo(Θ)

∂Im(LNkm)

}]
(18)

with Nk = Ni − 1. It is worth noting that the same constraint strategy used in the definition of eq. (8)
must be used to calculate the derivatives in eq. (18). Therefore, only the derivatives with respect to the
operational factors elements which are different from 1 are included in this equation. In eq. (14), Yo is a
sub-matrix with the derivatives of the equation error with respect to the real and imaginary parts of the
oth mode shape vector

Yo =

[
vec

{
∂Eo(Θ)
∂Re(ϕo1)

}
· · · vec

{
∂Eo(Θ)

∂Re(ϕoNm )

}
vec

{
∂Eo(Θ)
∂Im(ϕo1)

}
· · · vec

{
∂Eo(Θ)

∂Im(ϕoNm )

}]
(19)

It is worth noting that, apart from the measured FRFs, the variance of the noise is also taken into account
during the parametric identification with ML-based algorithms. In the context of EMA, the variance is
estimated by means of the so-called H1 FRF estimator [7]. In case of single-input measurements (i.e
SISO and SIMO systems), the variance can be calculated as:

σ2
Hoi

=
1

Nb

(
1− γ2oi
γ2oi

)
|Hoi|2 (20)

where Nb and γ2oi stand for the number of averaged data blocks used to estimate the FRF and the coher-
ence function, respectively. Given the block structure of the Jacobian matrix, the normal equations (10)
are rewritten as follows


R1 0 · · · 0 S1

0 R2 · · · 0 S2
...

...
. . .

...
...

0 0 · · · RNo SNo

ST
1 ST

1 · · · ST
No

∑No
o=1 To





vec(∆θ1)
vec(∆θ2)

...
vec(∆θNo)
vec(∆θLµ)


= −



Re
(
Y H
1 E1

)
Re
(
Y H
2 E2

)
...

Re
(
Y H
No

ENo

)∑No
o=1Re

(
XH

o Eo

)


(21)
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with

Ro = Re
(
Y H
o Yo

)
∈ R(2NmNi)×(2NmNi)

So = Re
(
Y H
o Xo

)
∈ R(2NmNi)×(2NmNi)

To = Re
(
XH

o Xo

)
∈ R(2NmNi)×(2NmNi)

From eqs. (21), the perturbation on the coefficients vec(∆θo) (i.e., the perturbations on the real and
imaginary parts of the mode shape vectors) can be written as a function of the perturbation on the natural
frequencies, damping ratios, operational factors, vec(∆θLµ), as:

vec(∆θo) = −R−1
o (Re

(
Y H
o Eo

)
+ Sovec(∆θLµ)) (22)

and the perturbations vec(∆θo) can be eliminated from the last set of equations in (21) by means of
eq. (22), yielding

No∑
o=1

(To − ST
o R

−1
o So)vec(∆θLµ) = −

No∑
o=1

(Re
(
XH

o Eo

)
− ST

o R
−1
o Re

(
Y H
o Eo

)
) (23)

or in a more compact form

M1vec(∆θLµ) = M2 (24)

with

M1 =
(
To − ST

o R
−1
o So

)
, M2 =

No∑
o=1

(
ST
o R

−1
o Re

(
Y H
o Eo

)
−Re

(
XH

o Eo

) )
(25)

This elimination reduces the memory required to run the algorithm. An efficient implementation of the
ML-ZMM is only possible if the variances are taken into account in the cost function (3). Once the
perturbations on the discrete-time poles and operational factors are calculated in the last iteration by
means of eq. (23), then perturbations on the mode shape vectors are computed using eq. (22).

2.1. Estimation of the uncertainty bounds

One of the main advantages of the ML-based algorithms is the possibility to estimate the confidence
intervals for the identified modal parameters using the noise information measured together with the
FRFs during the vibration tests. As shown in [7], a good approximation of the covariance of the ML
parameters ΘML−MM is obtained by

Cov(ϕ,L, µ) ≃ 1

2
Re
([
JH
l Jl

])−1 (26)

with Jl the Jacobian matrix evaluated in the last iteration of the Gaussian-Newton algorithm. Taking
advantage of the structure of the Jacobian matrix and using the matrix inversion lemma [8], the covariance
of the natural frequencies, damping ratios and the operational factors can be estimated independently as
follows
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Cov(L, µ) ≃ 1

2
M−1

1 (27)

Therefore, it is not necessary to invert the full matrix in eq. (21). Once the uncertainties on the discrete-
time poles are found from (27), they can be propagated to the natural frequencies and damping ratios by
means of the following linearization formulas [13]:

Var(Fnm) ≃
[
∂fnm

(
θµm

)
∂θ̂µm

]
Cov(θ̂µm)

[
∂fnm

(
θµm

)
∂θ̂µm

]T
Var(ξnm) ≃

[
∂ξnm

(
θµm

)
∂θ̂µm

]
Cov(θ̂µm)

[
∂ξnm

(
θµm

)
∂θ̂µm

]T (28)

Given the structure of the Jacobian matrix, it is straightforward to apply matrix inversion lemma [8] and
derive the covariance of the mode shapes, yielding

Cov(ϕo) ≃ R−1
o +R−1

o SoM
−1
1 ST

o R
−1
o (29)

3. VALIDATION OF THE ML-ZMM IMPLEMENTATION

The example used to validate the ML-based approach discussed in Section 2. is illustrated in Fig. 1.
This system was used by [14] to compare different modal parameter estimation techniques in terms of
their sensitivity to statistical errors. It comprises five masses supported by cantilever beams which are
connected among themselves by arch springs. The exact natural frequencies, damping ratios and modal
masses of the system are given in Tab. 1, whereas the real modes are shown in Tab. 2. These properties
were used to generate the FRFs used in simulated EMA.

1 2 3 4 5

discrete

masses

arch springs

x

y

z

cantilever

beams

Figure 1: Five-DOF system connected with arch springs [14]

The system was excited by a white Gaussian noise at masses 1 and 2, and the responses were measured
at all DOFs, resulting in FRF matrix with two columns and five rows. The FRF was calculated in the
frequency range of 0-80 Hz with a resolution of 0.1 Hz. Afterwards, a colored noise was added to the
FRF matrix with a standard deviation of 10%. The noise was added to the real and imaginary parts
independently, and was calculated as a percentage of the absolute value of the FRF at each frequency
line. This was achieved by adding a complex random number to the FRF at each frequency line. This
number was computed so that its amplitude is a random number of a normal distribution and its phase is
an uniform random number between 0 and 2π.
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Table 1: Eigenfrequencies, damping ratios and modal masses of the five-DOF system

Mode fn [Hz] ξn [%] mi [Kg]

1 26.06 2 2.52
2 36.84 2 2.97
3 51.47 2 0.90
4 56.21 2 1.09
5 62.60 2 1.05

Table 2: Real modes of the five-DOF system

DOF/Mode 1 2 3 4 5

1 0.7147 1.0000 -0.0911 -0.9230 -0.6083
2 0.7166 0.9999 -0.1493 1.0000 -0.1937
3 0.7981 0.2257 0.1554 -0.1518 1.0000
4 0.8518 -0.5166 1.0000 0.1231 -0.3936
5 1.0000 -0.8590 -0.5860 0.0196 -0.2041
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Figure 2: Element(1,1) of the FRF matrix contaminated with 10% noise: exact (black line) and noisy (red line)
FRF, noise standard deviation (green line) and exact natural frequencies (vertical lines) (a); and cost function
variation over the performed ML-ZMM iterations

The exact and noisy element(1,1) of the FRF matrix, and the corresponding “exact” standard deviation
of the noise are shown in Fig. 2a. A set of 500 FRFs with 800 frequency lines contaminated with noise
was generated to perform Monte Carlo simulations in order to assess the efficiency of the proposed ML-
ZMM. The modal parameters of each dataset were identified with the pLSCF and LSFD estimators
and then used as starting values to be optimized by the ML-ZMM algorithm. The identification of each
dataset was performed using the full frequency band, i.e., with no upper and lower residual terms. In
Fig. 2b, it is shown that variation of the cost function, l(Θ)ML−ZMM , over the five performed iterations
in a typical Monte Carlo realization.

The variations of the pLSCF and ML-ZMM estimates for the 3rd natural frequency and damping ratio
over the Monte Carlo simulations are shown in Figs. 3. These results show that the bias on the pLSCF
estimates is removed after only 5 Gauss-Newton iterations of ML-ZMM. Apart from its optimization
capabilities, the ML-based techniques have also the advantage of predicting the confidence bounds for
the optimized estimates if the noise information is taken into account in the optimization process. In
Figs. 4, the standard deviations of the 3rd natural frequency and damping ratio (estimated after 5 itera-
tions of the ML-ZMM in each Monte Carlo realization) are compared to the respective sample standard
deviation. It is clear from these figures that the ML-ZMM provides accurate estimates for the sample
standard deviations of such modal properties.
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Figure 3: Estimates for natural frequency (a) and damping ratio (b) of the 3rd vibration mode obtained with the
pLSCF (blue dots) and ML-ZMM after 5 iterations (red dots)
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Figure 4: Estimates for the standard deviation of the natural frequency (a) and damping ratio (b) of the 3rd vibration
mode obtained after 5 ML-ZMM iterations (red dots) and sample standard deviation (solid black line)

4. CONCLUSIONS

In this paper, an initial performance assessment of a ML-based estimator formulated in z-domain modal
model is presented. Just like any other ML-based approach, the ML-ZMM requires a good starting
guess to assure convergence over the performed Gauss-Newton iterations. Despite the fact that any LLS-
based identification technique can be used to provide the starting guess, the proposed ML approach is
combined with the pLSCF estimator to retain the multi-reference information and improve the accuracy
of the LLS estimates. The main difference of the ML-ZMM herein introduced with regards to the
ML-MM described in [10] is that the former optimizes the discrete-time rather than the continuous-time
poles. The efficiency of the ML-ZMM was assessed by means a simulated application example with
no upper and lower residuals. The results obtained from such simulations show that not only did the
ML-ZMM reduce the bias on the estimates for the natural frequencies and damping ratios, but it also
provided accurate estimates for the confidence intervals of those estimates.
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ABSTRACT 

The dynamic behavior of structures can be studied using numerical models, from which the numerical 

modal parameters can be extracted, or through the experimental modal parameters estimated with 

classical or operational modal analysis (OMA). On the one side, several identification methods 

proposed for operational modal analysis are easy to automate, which makes OMA an effective method 

for structural health monitoring and vibration serviceability. On the other side, numerical models can 

be used to predict the response of structures in operation. In this paper, the dynamic behavior of the 

footbridge located at the Milan’s campus (Oviedo, Spain) is studied. This lattice structure links two 

buildings at a height of 12 meters, and it has a complete glass enclosure, which favors the influence of 

the wind, and may therefore be subjected to greater dynamic loads than those predicted in the design of 

the structure. The experimental modal parameters of this structure were estimated with operational 

modal analysis and used to update a numerical model assembled in ABAQUS. 

Keywords: Footbridge, Modal Analysis, OMA, Numerical Analysis, Model Updating. 
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1. INTRODUCTION 

It is well known that Operational modal analysis (OMA) is an useful technique for  estimating the modal 

parameters (natural frequencies, mode shapes and damping ratios) of medium/large structures [1-4] 

using natural and operational loads.  

This paper reports the operational modal tests and anlayis  applied to a footbride gallery (see Fig. 1). 

This footbridge structure was constructed between the late 80s and early 90s, with the objective of 

linking the two main buildings of the “Campus of Milán” at the University of Oviedo (Spain). The 

pedestrian footbridge was assembled in factory and then placed on the buildings with a crane. The 

structure is located at approximately 12 metres from the base of the building. The footbridge is a steel 

structure composed of two lateral Pratt trusses, which are connected through the top part by a gable 

roof.  

The pedestrian bridge also has a glass cover on the top and in both lateral sides, which was not 

considered during the structural design. No information about the time when this enclosure was placed 

is available. This area of the city is subjected to moderate winds, and the glass cover can influence the 

dynamic behavior predicted for the structure. An updated finite element model could be useful to study 

the influence of the enclosure in the dynamic behavior of this structure. 

 

 

Figure 1. Pedestrian Footbridge at the Milan’s campus. 

 

The trusses are made of steel S275. UNP280 profiles, in a box-welded configuration, were used in the 

top and bottom chords, whereas the diagonals and the vertical posts were constructed with UNP140 

profiles, also in a box-welded configuration. The total length of the structure is 34 meters, and it is 

supported in both buildings for a length of 5 meters. The width of the footbridge is 4.35 metres and the 

height 3.4 metres. These dimensions were measured in situ, and they are not consistent with the 

information provided by the original project of the structure (Fig. 2). Information about how the 

structure is supported in the buildings is not available either. The deck of the footbridge is made of 

concrete and supported by concrete T beams. 
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Figure 2. Real dimensions of the built (bottom image) structure and original drawings (top image). 

 

In this work, a finite element model of the structure was assembled and updated with the experimental 

modal parameters estimated with operational modal analysis. The experimental modal parameters will 

be used for a future  periodic structural health monitoring (SHM) of the footbridge, and the structural 

behavior with and without glass cover will be investigated with the updated finite element model.   

2. OPERATIONAL MODAL ANALYIS 

The experimental odal parameters (natural frequencies, mode shapes and damping ratios) of the 

structure, in the range 0-50Hz, were estimated with Operational Modal Analysis (OMA). 

 

Figure 3. Experimental DataSet 

 

The experimental responses were measured in 14 nodes and 23 DOF’s (Fig. 3) using 6 accelerometers 

(PCB 393B31) with a sensitivity of 10 V/g (Fig .4) using 3 data sets. The responses were measured with 

a TEAC-LX 120 acquisition system using a sampling frequency of 100 Hz. The responses were 

measured for approximately 20 minutes in each data set   Apart from the natural excitation, the structure 

was also excited by 3 people walking and jumping randomly over the structure. 
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Figure 4. PCB 393B31 accelerometers 

 

The modal identification was performed using the Artemis Modal software and the modal parameters 

were estimated with the CFDD (Curve-fit frequency domain decomposition) and SSI (subspace 

stochastic identification) techniques [5]. The singular value decomposition of the SSI stabilization 

diagram is presented in Figure 5 for the vertical DOF’s. 

 

 

Figure 5.SVD of the acceleration vertical  responses.  

 

2.1. Experimental results in vertical direction 

The experimental mode shapes in the vertical direction, obtained with the CFDD technique, are 

presented in Figure 6, whereas the natural frequencies are presented in Table 1. 
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Figure 6. Experimental mode shapes  

 

As it can be observed, the DOF’s located in the supporting area are moving in the vertical direction, 

which means that the footbridge is not completely fixed to the buildings, i.e. there is a non-linear relative 

motion of the footbridge with respect to the buildings.  

2.2. Experimental results in lateral direction 

With respect to the lateral modes, the analysis is more complex, because no sensors were attached to 

the buildings. Moreover, the gable roof introduces additional local lateral modes which are dificult to 

identify considering only the sensors located at the deck. Only three lateral modes were identified with 

a reasonable  reliability. The natural frequencies correspoding to these modes are presented in Table 2 

and the mode shapes in Figure 8. 

 

 

Figure 7. First singular value of the acceleration lateral responses. 

 

 

 

 

Mode 1 Mode 2 Mode 3 

Mode 4 Mode 5 

45



   

 

   

 

 

Figure 8. Experimental and numerical lateral modes 

3. FINITE ELEMENT MODEL 

3.1. First finite element model 

The finite element model of the pedestrian footbridge was modeled in ABAQUS CAE. The model was 

meshed using 1-D beams elements (B3D3) for all the structural elements (see Fig. 9). The mass of  the 

footbridge enclosure (glass + aluminum frames) were modeled as point-masses, whereas its  effect on 

the stiffness of the structure was not considered. 

 

Figure 9. Finite element model of the structure 

 

As it was previously mentioned, the boundary conditions are not known in detail. Pin supports were 

considered along the 4,9 meters of the bottom chords resting on the buildings (see Figure 10) The 

numerical natural frequencies corresponding to the vertical modes are presented in Table 1, whereas 

the those corresponding to the lateral modes are shown in Table 2. 

 

Mode 1 Mode 2 Mode 3 
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Table 1. Experimental and numerical natural frequencies for the vertical modes. 

Mode 

Frequency 

Experimental [Hz] Numerical [Hz] Error [%] 

1 (bending) 7.56 7.43 1.67 

2 (torsion) 11.05 11.11 0.52 

3 (bending) 15.87 14.67 9.19 

4 (bending) 21.79 19.17 12.02 

5 (bending) 24.32 23.46 3.52 

 

It can be observed in Table 1 that a good correlation exists for the modes 1,2 and 5, the errors being less 

than 3.5%, whereas a larger error has been obtained for modes 3 and 4. With respect to the lateral modes 

(see Table 2) the discrepancies are significantly large, which can attribuited to the boundary conditions 

assumed in the numerical model.  

 

Table 2. Experimental and numerical natural frequencies for the lateral modes. 

Mode 

Frequency 

Experimental [Hz] Numerical [Hz] Error [%] 

1 4.06 4.35 7.14 

2 8.09 13.68 69.08 

3 15.14 20.64 36.32 

 

3.2. Model updating 

In order to get a better numerical-experimental correlation, the numerical model was manually updated 

[6]  using the modal parameters estimated with OMA. Only the boundary conditions were modified in 

the updating process (see Fig. 10), diminishing the length and the number of the pin supports. This 

changes mainly affect the lateral modes decreasing the stiffness in this direction. 

After the updating process, a good correlation was obtained for the vertical modes, the errors being less 

than 5.1% (see Table 3). With respect to the lateral modes (See Table 4), the numerical-experimental 

discrepancies also decrease significantly, confirming the fact that the structure is not firmly or fully 

attached to the buildings.  However, although the errors were reduced for the identified lateral modes, 

the second bending mode (see Figure 8) still presents a large error (33 %). 

 

 

Figure 10. Original (left) and updated (right) boundary conditions used in the FEM model. 
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Table 3. Experimental and updated numerical natural frequencies for the vertical modes. 

Mode 

Frequency 

Experimental [Hz] Numerical [Hz] Error [%] 

1 (bending) 7.56 7.50 0.81 

2 (torsion) 11.05 11.21 1.46 

3 (bending) 15.87 15.06 5.10 

4 (bending) 21.79 21.50 1.32 

5 (bending) 24.32 24.11 0.86 

 

Table 4. Experimental and updated numerical natural frequencies for the lateral modes. 

Mode 

Frequency 

Experimental [Hz] Numerical [Hz] Error [%] 

1 4.06 4.02 0.98 

2 8.09 10,76 33.01 

3 15.14 16.28 7.52 

 

4. CONCLUSIONS 

 

 A footbridge connecting two builinding in the Campus of Milan (University of Oviedo) was 

modelled in ABAQUS and the numerical modal parameters were correlated with  the 

experimental modal parameters estimated with operational modal analysis (OMA). 

 The boundary conditions were not known in detail and the numerical model was manually 

updated using the experimental modal parameters in both lateral and vertical directors, in order 

to get a better correlation.   

 From the updated numerical model, it is concluded that the structure is not fully fixed to the 

buildings. 

 Further studies, numerical and experimental, will be carried out in order to model this structure 

more accurately.  

 A fatigue analysis should be carried out in order to identify damage and to stablish an initial 

state for the future structural health monitoring of the footbridge. 
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AMBIENT VIBRATION TEST AND MODAL RESPONSE ANALYSIS OF A 
UNIVERSITY BUILDING IN A SEISMIC REGION 

Víctor Carol Hernández Monzón 1, Carlos E. Ventura2 

 
Summary 

This article emphasizes the analysis of environmental vibration and its response of an 
educational building that has been developed by the University of San Carlos de 
Guatemala – USAC – [1], since 1970. This structural model has been used as a 
parameter for most of their constructions in many buildings nationwide. For this project 
one of the main approaches is to be able to carry out a modal response analysis of this 
type of building. Considering that the study carried out is located in a seismic zone with a 
very high frequency of seismic events, such as the expulsion of degassing from the 
Santiaguito volcano which is located in the south of Quetzaltenango city. And also the 
movement of tectonic plates, in this particular case The Cocos subduction plate, which is 
a young oceanic tectonic plate beneath the Pacific Ocean off the west coast of Central 
America where there is a frecuent sismic activity. 
 
The building taken as a sample is a 3-level reinforced concrete building consisting of 
moment-resistant frames, with a flat slab, which is symmetrical in its structural footprint 
as well as vertically in its main elements, and also has an opening of 18 x 36 m., to 
separate the rooms (classrooms and laboratories) of the building. Masonry walls were 
done in its construction, which were decoupled from the main elements such as beams 
and columns. 
 
For this, environmental vibration tests were carried out to obtain natural frequencies, 
mode shapes and damping ratios. These parameters have been obtained using the 
Artemis software version 7.2.0.0 Likewise, an FEM model of the structure is established 
for which the ETABS – CSI- [2] software was used in order to compare the results 
obtained from the environmental vibrations, for this several hypotheses and comparisons 
of the analytical and experimental results are presented. 
 
This work has been developed with professors of the Civil Engineering department who 
have helped to take the corresponding captures. As well the Consejo Superior 
Universitario Centroamericano -CSUCA- [3] Dr. Carlos Alvarado Cerezo and Centro de 
Coordinación para la Prevención de los Desastres en América Central y República 
Dominicana [4] and its Executive Secretary Licda. Claudia Herrera, as well as the Swiss 
Cooperation- COSUDE- [5] for the equipment and software donated to the Civil 
Engineering course at the Centro Universitario De Occidente, within the framework of the 
Effect 3 Project "Project to strengthen the governance of Disaster Risk Management in 
Central America" as part of the Insertion of Gestión Integral de Riesgo (GIRD) and 
resilient adaptation to climate  change (ACC) as a transversal axis of the Civil Engineering 
career”.  
1 - Professor, Civil Engineering Department, USAC CUNOC Guatemala – hernandez.victor@usac.edu.gt 
2 - Professor, Civil Engineering Department, UBC, ventura@ubc.ca 
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Introduction 
During the last years, this type of studies has been carried out worldwide in a very efficient 
way, both to be able to establish the monitoring of the structural health of structures as 
well as to be able to calibrate the analytical and experimental models, which is the 
development of this work, the desire to establish and to define the differences between 
the natural period of vibration (analytical) and experimentally, this type of study has not 
been carried out so far in Guatemala, being one of the first where the Modal Operational 
Analysis is applied. Ventura [6], 
 
The structural typology is disclosed, the type of building used by the Centro Universitario 
de Occidente -.CUNOC- [7], as well as the definition of the loads that are currently defined 
in the NSE regulations -Structural Safety Standards- established by the Coordinadora 
Nacional de Desastres  -Conred- [8], through the Association of Structural and Seismic 
Engineering -AGIES v.2018 [9]- 
 
The methodology used displays the steps taken into account for the development of this 
work, showing in a very simplified way the development of the data sampled in the 
experimental part, especially to establish the context of the dynamic analysis. 
 
 
To develop the sampling of this type of structural footprint, it was established on how the 
sampling would be done so as not to use equations or extrapolation in the model -
ARTeMIS- to simplify the configuration of the dynamic model in txt format. 
 
Until now, this type of study has not been carried out in Guatemala since there was no 
equipment or knowledge to make this type of analysis, therefore this is a pioneer in 
research that will have a lot of outcomes on teaching-learning, both at the level of 
undergraduate and graduate of the University Center of the University of San Carlos de 
Guatemala. These environmental vibration tests are easy to carry out, taking into 
consideration some important things such as the placement of devices, connection with 
the program that the devices bring by default, as well as the transfer of data in programs 
such as Viewwave [10], Seismosignal [11], this last one for the baseline correction and 
define the Setup of each sampling point taken into account. 
 
These environmental tests have several advantages: They are simple to carry out, the 
external excitation is due to the environmental noise. As a result of  the pandemic the 
building at the time of sampling was completely empty with no humans beings inside. 
(01.31.2022), so only the vibrations found are due to the traffic, which comes from the 
north of the building, the west side and as well as the wind. 
 
Modal identification is the determination of modal parameters of structures constructed 
from experimental data. Modal identification of output-only structures is typically used to 
identify modal parameters from the natural responses of many structures (civil, spatial, 
and mechanical). In these cases, the loads are unknown, and the identification process 
is carried out based only on the responses. Typically, the identification process is based 
on ambient vibration testing, and assumes that a structure can be adequately excited by 
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natural forms such as wind, human activities, and the result of  motions that can be easily 
measured with highly sensitive instruments. Applications in civil engineering structures 
can be found in Ventura, Brincker, Cunha [12]. 
  
The Finite Element Model (FEM) of the building is explained as they were analyzed to 
obtain approximate results in relation of the models. The results of the dynamic analysis 
are compared with experimental data such as fundamental frequencies and mode 
shapes, they are tabulated and discussed. 
 

Building Description 
 

The building consists of three levels with a height of 10.65 m, each level with a height of 
3.55 m, the slab used is ribbed with reinforced ribs 0.27 m thick and filled with a block 
specially manufactured for this purpose, the construction took place in 2005 with the 
standards and norms of that time. Located in the west of Guatemala, Occupation of the 
educational type building, Seismicity Index of the place 4.1, Spectral ordinate for short 
period Scr. 1.5g, Spectral ordinate period of 1 second 0.55 s. AGIES [13] Structural 
system defined by reinforced concrete frames E-1, the components of the structural 
system as special frames columns-beams.slabs. 
 
A very special characteristic of this type of structure is that it is used in the vast majority 
of donut-type University buildings, that is; with a hole in the central part of 18 x 27 m, the 
dimensions of the building are 45 m long and 36 meters short length, the structural system 
is considered in the AGIES regulations as Important Works within category III, distance 
between columns of 9.0 m to axes, columns of 0.70 x 0.70, beams of 0.60 x 0.40 m. To 
establish the divisions between the classrooms were built with masonry walls of 0.15 for 
the first level of brick with pines and walls on the second and third levels of pine block, 
separated from the structural frames of one inch of separation. Borders were used for the 
perimeter enclosure with shotcrete and pinned, likewise in the overhangs in the internal 
part, borders are used in the same way as the perimeter enclosure. 
 
Moreover, in order to control what is stipulated in the plans is actually built, 
complementary studies were carried out, such as: 
 

• Standard penetration test (SPT), to verify the speed of short waves at different 
stratigraphic levels. 

• Vertical electrical survey, to be able to establish the resistivity of the soil, 
• Radiography of beams, columns and slab to establish the steel used. 

 
The main façade/front, the floor plan and seismic hazard characterization Fig. 2 are 
presented due to its location in the city, likewise there is a study that places the city in two 
scenarios for seismic risk, establishing a 7.6 earthquake for a Chixoy fault -Polochic 
located to the north of the department, and a 7.7 scenario for a subduction earthquake 
Fig. 3. 
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Fig.1 : Buildings view 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 2: The study on groundwater development in the central plateau in 
Guatemala 1,995 Kokusai Kogyio Co., Ltd, Japan International Cooperation Agency 
(Cooperation, 2022) 

 
 
 

Fig. 3: Seismic Prediction in Quetzaltenango, according to  Japan International 
Cooperation Agency study 
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The understanding of the dynamics of structures was the main object of this study through 
the instrumentation program for the understanding and behavior of structural damage to 
earthquake loads. In the elastic range of structures with environmental noise, in order to 
establish a better understanding of the finite element programs that were used at the time 
and that today both the sensors and the software have advanced enormously for a better 
understanding of what the user projects in the analytical models and compare them with 
the vibration of environmental noise of the structural, is the most important for a better 
understanding of structures. 
 

Finite Model Element 
 
To enter information into the analytical model, all available information was sought, as 
well as complementary studies in order to have an approximation from the structure as 
equal as possible, which was entered directly into the finite element model (FEM), using 
ETABS. Previously to obtain results of the different modes of vibration of the structure. 
Several models were made to improve the corresponding analysis. Different types of 
structural systems were analyzed, in each of them the fundamental period of said analysis 
is defined, being the following: 
 
1. Structural frames fig. 4 
2. Structural frames including articulated walls and stands module fig. 5 
3. Structural frames including articulated walls and stands module fig. 6 
 

 
 
 
 
 
 

Fig. 4: 3D elevation view of the finite element model. Structural frames only 
Fundamental mode 0.48 sec. 
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Fig. 5: 3D elevation view of the finite element model. Including stands and walls 
without connecting them to the frame system. Fundamental mode 0.20 sec. 

 
The results obtained with FEM were used to choose the appropriate sensor location for 
environmental vibration tests. The experimental results were used to update the FEM, 
introducing a slight variation of the modulus of elasticity, in order to coincide with the 
analytical and experimental results (see Table 1). 
 
 

 
 
 
 
 
 
 
 
 

Fig. 6: Building modeled with articulated walls fundamental mode (without 
connection and without module of stairs) 
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Fig. 7: Modeled building with hinged walls 2nd mode (without connection and 
without stairs) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1: Main modes of the structure 
 

Environmental Vibration Tests 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Environmental vibration test-based analysis is a methodology used to characterize the 
dynamic behavior of a structure excited by low-amplitude vibrations. The information 
obtained can be useful for calibrating and updating finite element models of the building, 
or can be also used for monitoring the health of the building. The importance of the 
environmental analysis Celebi [14] is given by the elastic properties of the structure and 
the behavior before a severe seismic event to the structure can pass to the non-linear 
range and it is much easier to predict it. The procedures and the main results obtained 
for the environmental vibration tests are described below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

N.º Mode shape Updated 
Model 

1 1st torsion 3.479 Hz 

2      2nd NS 3.70 Hz 

3      3nd  WE 4.44 Hz 
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Instrumentation 
For the present work, three Etna2 [15] figure 8 accelerographs were used, calibrated for 
+ 1g, with 200 sps, having as reference, type: triaxial episensor forced balance 
accelerometers, digitizer: 3 to 24 bit sensor channel for internal sensor band-optimized 
32- bit data path, Dynamic range: -130 db at 100 sps, earthquake early warning low 
latency 0.1 s packets reade. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Etna2 de Kinemetrics 
 
 

The response of the structure was recorded at various places in the building; the location 
of the sensors Fig. 9., three 3-component accelerometers (triaxial) were used, one was 
used as a reference sensor and the other two were located in different positions in such 
a way that they moved parallel both on the roof, 3rd level, and 2nd level , considering a 
rigid base at floor level, according to the SPT study and the AGIES standard classification, 
It has to be facing N in order to obtain the NS, EW and Z (vertical) components, in this 
case they are obtained for each setup 09 components out of a total of 12 setup that are 
entered in the ARTeMIS configuration, since it is much easier to enter the information 
through the config. extension of the software. 
 

 

 

 

 

 

 

 

                                  Fig. 9: Positioning of sensors on the roof 
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Experimental Settings 
The acceleration data was recorded 07 minutes, to guarantee that all the modes of 
interest are excited, taking as reference the values of 1000 < T < 2000, where T is the 
time to define the sampling time according to the main parameter of the Fundamental 
Period of the building approaching 0.30 second taken from rule of thumb N/10 which is 
equal to 0.30 sec. The sample rate is 200 Hz. The results presented here were obtained 
using a decimation factor of 10 for the 200 Hz sample rate and averaged over 1024 
sample points. This value corresponds to eliminating all frequencies above 10 Hz in the 
spectra. These frequencies are eliminated since they are not considered to be outside 
the study range. 
 
 
 

Spectral Analysis 
Modal identification is used to identify the modal parameters of a structure using 
measurements of experimental data. The building is subjected to environmental 
vibrations generated by "unknown" loads, such as wind, human activity, traffic parallel to 
the North and West building, etc. The whole system is assumed to be driven by Cunha 
white noise . In these cases, the structural modes are identified, as well as what are called 
operational modes. The main focus of output-only analysis is to be able to distinguish 
structural modes from operational modes, in the process of modal identification. 
 
The ARTeMIS version 7.2.0.0 [16] software was used to perform the modal identification 
of the structure. Two different techniques were used for modal identification: the 
Frequency Domain Decomposition (FDD) and the Stochastic Subspace Identification 
(SSI) technique given by Van Overschee and Me Moor. These two modal identification 
techniques are used to validate the results. 
 

Point selection 
The sensors that have been moved from position on each floor carrying a sequence on 
the three levels in such a way that their position with the roof was maintained (see fig. 
10). To simulate the modal configurations, the rigid movement of the body of the floor 
slabs is assumed and the registered movements are translated into the equivalent 
movement of the three points used to simulate the rectangular shape of the structure, in 
ARTeMIS, trying to define a geometric figure that more similar to the analytical model to 
resemble its shape. 
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Fig. 10. Model in ARTeMIS with view of the sensors 

 
Data processing consists of the following steps in a summarized way: 
 

• Examine the accelerograms of the same recording to evaluate their quality and to 
synchronize them based on the common time signal. 

• It is necessary to define that for each Setup in the configuration program nine 
registers are defined in each of the NS, EO, Vertical directions. 

• Baseline correction is performed to determine the zero acceleration axis, and thus 
eliminate the frequency components that are not of interest when applying a filter 
between 2 and 10 Hz. 

• Integration of the corrected accelerograms to obtain the histories in time, speeds 
and displacements. (Viewwave, Seismosignal) 

 
For the study of the behavior of the instrumented building, data must be analyzed in the 
time and frequency domain, to establish the structural characteristics, such as 
frequencies and natural modes of vibration; comparing them with various models that 
were developed. Throughout this work, given the uncertainty of taking these variables 
into consideration or not, such as the perimeter borders, cantilevered borders, connection 
of the walls, and the placement of the stands in the analytical model.  
On the other hand, it is important to highlight that the sections considered were taken as 
gross sections without cracking since the building has not suffered damage over time, 
only in the walls, but this is due to the fact that in some places the expansion joint is not 
the best so that in the face of severe seismic events that they have had; If they have 
shown cracking, as a result of the differences in stiffness between the walls and the 
structural system used, considering that the masonry walls are not totally disconnected 
mainly in the 3rd . Level. 
 
The FDD technique roughly decomposes the density spectral matrix of the system 
response in an ensemble of SDOF systems using singular value decomposition (SVD) 
within a frequency range to discard values that do not have a very specific relationship. 
The singular values are estimations of the spectral density of the systems see fig. 11., 
SDOF, and the singular vectors are estimates of the mode shapes.  
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The SSI technique consists of fitting a parametric model to the raw temporal data series 
collected by the sensors. Using a specific representation of the transfer function, all modal 
parameters are exposed. Therefore, the natural frequency damping ratios and mode 
shapes can be extracted.  
 
 

 

 

 

 

 

Fig: 11, Singular values of the spectral density sampling. 
 

Experimental Results 
 
The results of the FDD peak collection method are presented in Fig. 12. The identification 
of three peaks is clear: they are structural modes and represent natural frequencies of 
the building, and they are compared with the values obtained in the analytical model. 
 
 

 
 
 
 
 
 
 

Fig. 12, Frequency analysis to identify vibration modes 
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Nº Mode shape Numerical 
results EFDD 

1 1st Torsion 3.418 Hz 3.48 Hz 
2 1st NS 3.491 Hz 3.70 Hz 
3 1st NS 3.833 Hz 4.44 Hz 

Table 2: Comparison of fundamental frequencies 

 
CONCLUSIONS 

The environmental vibration tests provide a very proximate estimate of the values of the 
analytical model. due to the information processed, other important parameters must 
continue to be established in order to have closer approximations in the experimental and 
analytical frequencies. As well as referencing the sampling points so that in the future the 
post-earthquake conditions of the studied structure can be evaluated and see how it can 
be degraded, although it can be seen that in the University Center there are other modules 
very similar to the structural system of the building under observation and it can be seen 
that after 40 or 50 years they have only had problems of differential and non-structural 
settlements (2nd Order), for which the information must be safeguarded to see possible 
changes in stiffness in the elements when is subjected to seismic excitations, this 
contributes to the teaching - learning that must be made known in undergraduate and 
postgraduate students so that they can take as a reference and that they can learn from 
this type of building that fundamentally in its first mode is rotation due to the large opening 
in the center. 
 
It should be noted that when considering the non-structural elements in the building, the 
correlations and the approximation to the fundamental mode in the elastic mathematical 
model and experimental values are consistent, taking into consideration all the structural 
elements and the so-called non-structural elements that in a certain way They contribute 
significantly to the stiffness and mass of the structure and this is demonstrated by the 
closeness of the values of the ambient vibration modes and those in the analytical model. 
 
It is important to point out that a soil-structure interaction study must be carried out in 
order to better determine if there are changes in the fundamental frequency of the 
building, and to determine transfer and coherence functions that allow a better 
approximation of the values calculated in this work. 
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BAYESIAN UPDATING FOR DISCRETE-TIME 

DOMAIN MODEL OF CHATTER IN TURNING 
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ABSTRACT 

Dynamics of the turning process include a natural delayed feedback loop which may destabilize the 

process vibrations and cause chatter. Identification of the machine tool’s modal parameters is essential 

for model-based optimization of the machining parameters to prevent chatter. Operational Modal 

Analysis (OMA) can effectively be used to identify the modal parameters from the vibration signals 

measured under machining conditions, however, the identified parameters are strongly affected by the 

feedback loop in the process dynamics. In this work, we use Bayesian inference to extract the machine 

tool’s modal parameters from the (closed-loop) system poles estimated by OMA. A discrete-time 

domain model of turning dynamics is used to relate the machine tool’s modal parameters to the system 

poles estimated by OMA. Bayesian inference is then used to determine the posterior probability 

distribution of the modal parameters. The resulting probability distribution functions are also used in 

the chatter model to establish probabilistic chatter limits for the machining parameters. An experimental 

example is presented to show that the predicted chatter limits are more accurate than those obtained by 

traditional methods based on modal testing under non-operational conditions.   

Keywords: Operational Modal Analysis, Bayesian Model Updating, Chatter 

1. INTRODUCTION

Machining forces are proportional to the thickness of the removed chip, which is in turn modulated by 

the tool or workpiece vibrations that are caused by those forces. This feedback from vibrations into the 

forces that cause them creates a natural delayed feedback loop in the machining dynamics. If machining 

parameters such as spindle speed and cutting width (or depth) are not selected properly, the process 

vibrations become unstable and cause chatter, damaging the tool or the machined surface[1]. Stable 

machining conditions can be identified by the bifurcation analysis of chatter models that describe the 

system dynamics with delay differential equations [2]. Existing chatter models require accurate 

knowledge of the machine tool’s Frequency Response Function (FRF) at the tool’s tip or the modal 

parameters extracted from the FRF. The machine tool’s FRF or its modal parameters are usually 

obtained by traditional modal testing (e.g. impulse hammer) when the machine tool is in idle condition. 
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However, the machine tool’s dynamics change considerably under operational machining conditions—

for example, due to spindle rotation, bearing preload, or process damping. Operational Modal Analysis 

(OMA) is a more suitable method for identifying the machine tool’s dynamics, but important challenges 

such as strong harmonics in the response (due to spindle rotation), mode-shape scaling, and the natural 

feedback in the process dynamics limit the application of OMA in machining. 

Instead of common excitation methods (e.g. hammer or shaker) in modal testing, Minis et al. [3] used 

the machining forces as the excitation source in the identification of the dynamics of a turning machine. 

Because the input machining forces were measured by a dynamometer and used to identify the system 

dynamics, this method can be classified as a hybrid experimental-operational modal testing. To expand 

the bandwidth of the excitation forces, a pseudo-random binary pattern was created on the workpiece 

surface to add a strong random component to the harmonic forces generated at the spindle revolution 

frequency. A similar approach was later adopted by Ozsahin et al. [4] for milling operations. Inverse 

stability analysis in the works of Ozsahin et al. [5], Grossi et al. [6], Eynian [7], and Liu and Altintas 

[8] also provide an operational method for identifying the dynamics of the machine tool. This method 

uses the experimentally identified chatter limits of the machine tool in the corresponding chatter model 

to identify the machine tool’s dynamics inversely. Following a similar concept, Postel et al. [9] use the 

experimentally identified chatter limits in machine learning methods to identify the machine tool’s 

modal parameters. The accuracy of these methods strongly depends on the ability to detect vibration 

instability in the experiments, which is difficult, especially when the system is close to the border of 

stability and is affected by several random and nonlinear phenomena.  

Operational modal analysis in its traditional sense (i.e. output only—without measuring the input 

machining forces) was also studied by Zaghbani and Songmene for milling operations [10]. Modal 

frequency and damping values were shown to vary considerably by spindle speed, but mode shape 

scaling and removing the effect of the feedback loop from the identified modal parameters were not 

discussed. Kim and Ahmadi used an OMA method to identify the dynamics of the machining system 

from the acceleration signals measured under turning force [11]. They showed that the modal frequency 

and damping values identified under stable machining conditions represent the dominant poles of the 

closed-loop system. Similarly, Kiss et al. [12], [13] identified the closed-loop dynamics of the 

machining system by perturbing its stable orbits during the process (using impact test). Because the 

stability of the closed-loop system depends on the modal damping corresponding to its dominant pole, 

the identified modal damping ratios can be used to accurately quantify the level of stability under the 

tested condition. However, improving the accuracy of chatter models requires the identification of the 

open-loop modal parameters of the machine tool (or workpiece) under operational conditions. Ahmadi 

[14] used Bayesian inference to update the machine tool’s modal parameters in a frequency domain 

chatter model. The experimental data needed for Bayesian updating were obtained by the OMA of the 

closed-loop system, as presented in [11]. The updated probability distributions of the modal parameters 

were then used in a discrete-time domain model of chatter to determine the probability of chatter 

occurrence under given machining conditions. The resulting stability predictions were shown to be more 

accurate after model updating.  

This paper improves the method in [14] by using the discrete-time domain model in both of the updating 

and stability prediction stages. Because updating the discrete-time domain requires computing the 

eigenvalues of its transition matrix at each likelihood function evaluation, which can be computationally 

intractable, the method presented in  [14] uses a frequency domain model in parameter updating; but 

then a discrete-time domain model must be used for predicting the system stability using the updated 

parameter distributions. As a result, the predicted system stability is still affected by the discretization 

error of the discrete-time domain model. To circumvent this problem, in this work, we use a surrogate 

of the discrete-time domain model to evaluate the likelihood function and use the discrete-time domain 

method in both of the model updating and stability prediction stages. Therefore, the updated parameters 

also compensate for the discretization error and result in more accurate stability predictions.   

The discrete-time domain model of machining chatter in turning is described in the next section, 

followed by a brief description of the Bayesian model updating method in Section 3. Formulating the 

likelihood function based on the surrogate of the discrete-time domain model is also discussed in 
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Section 3, and an experimental case study is presented in Section 4 to demonstrate the implementation 

of the presented model updating approach.  

2. CHATTER MODEL 

Consider the turning setup shown in Figure 1. The tool is fixed to the table of a Computer Numerical 

Control (CNC) machine tool and a cylindrical workpiece is mounted in the spindle that rotates at the 

fixed speed of  60/𝜏 revolutions per minute. The general equation of elastic vibrations of the tool in 

this setup is as follows: 

 

 �̈�(𝑡) + 2𝛀𝒁�̇�(𝑡) + 𝛀2𝒒(𝑡) = 𝑎𝚽𝑇𝑲𝑐𝚽(𝒒(𝑡 − 𝜏) − 𝒒(𝑡)) (1) 

 

where q(t) is the vector of modal coordinates, 𝑲𝑐 = [𝑘𝑓𝑐 ,     𝑘𝑡𝑐]𝑇[1,     0] is the matrix of cutting force 

constants, and a is cutting width. The delay term on the right-hand side of the equation represents chip 

thickness modulation due to the surface waves generated by vibrations in the preceding pass, as 

illustrated schematically in Figure 1(a). The block diagram of the closed-loop system dynamics is 

shown in Figure 1(c). In the example used in this work, the tool is axially rigid and its lateral vibrations 

are measured by accelerometers mounted at M points in Z-direction and N points in Y-direction, as 

shown in Figure 1(a). The workpiece is also flexible in Y-direction, but its deflections in that direction 

do not affect chip modulation and can be omitted from the equation of motion.  

 

Figure 1: a) schematic of the test setup and chip regeneration in turning, b) picture of the test setup, and 

c) block diagram of closed-loop dynamics in turning  [14] 

In Eq.(1), Ω is the diagonal matrix of modal frequencies, ωn , Z is the diagonal matrix of modal damping 

ratios, ζn, and Φ is the matrix of mass-normalized mode shapes, ϕn. Traditionally, these parameters are 

measured by modal testing such as impulse hammer tests when the machine is in idle condition. 

However, these parameters strongly depend on the operational conditions (e.g. due to process damping) 

and therefore are better described by the following random variables: 
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 𝜔𝑛 = �̅�𝑛(1 + 𝜃𝜔𝑛
),    𝜁𝑛 = 𝜁�̅�(1 + 𝜃𝜁𝑛

), 𝝓𝑛 = �̅�𝑛(1 + 𝜃𝜙𝑛
), n=1..N (2) 

 

where overbar designates the nominal values and θωn, θζn, and θϕn are random variables representing the 

variations of the nominal modal parameters. Notice that the mode shapes are assumed to remain 

constant but their mass-normalization factor are variable. The goal of this work is to determine the joint 

probability distribution of θm=[θωn, θζn, θϕn]
T based on the OMA of the closed-loop machining system.  

The continuous-time distributed-parameter system in Eq.(1) can be approximated by a lumped-

parameter system in the discrete-time domain, where the delay term τ is divided into m time-intervals 

of Δt seconds (τ=mΔt) and the system is assumed to be subjected to constant forces within each interval 

[15]. As a result of discretization, the dynamics of the approximated lumped-parameter system is 

expressed by the following equation: 

 𝒖𝑖+1 = 𝑮(𝑎, 𝜏, 𝜽𝑚)𝒖𝑖 (3) 

 

where ui= u(iΔt) is the state vector for the approximate lumped system, and G(a,τ,θm) is the 

corresponding state transition matrix. The compositions of the state vector and transition matrix depend 

on the applied discretization method. With the full-discretization method used in this work [16], the 

transition matrix is expressed as follows:  

 𝑮(𝑎, 𝜏, 𝜽𝑚) =

[
 
 
 
 
 
 
 Φ0 𝟎 𝟎 ⋯ 𝟎 (𝚽1 −

1

Δ𝑡
𝚽2)𝑩

1

Δ𝑡
𝚽2𝑩

𝐈 𝟎 𝟎 ⋯ 𝟎 𝟎 𝟎
𝟎 𝐈 𝟎 ⋯ 𝟎 𝟎 𝟎
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝟎 𝟎 𝟎 ⋯ 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 ⋯ 𝐈 𝟎 𝟎
𝟎 𝟎 𝟎 ⋯ 𝟎 𝐈 𝟎 ]

 
 
 
 
 
 
 

 (4) 

where 

 𝚽0 = 𝑒𝑨Δ𝑡;𝚽1 = 𝑨−1(𝚽0 − 𝑰);𝚽2 = 𝑨−1(Δ𝑡𝚽0 − 𝚽1) (5) 

and  

 𝑨 = [
𝟎 𝑰

−𝛀2 − 𝚽𝑇𝑎𝑲𝑐𝚽 −2𝛀
] ;𝑩 = [

𝟎 𝟎
𝚽𝑇𝑎𝑲𝑐𝚽 𝟎

] (6) 

 

At each combination of spindle rotation period and cutting width, 𝜏 and 𝑎, stability of the linear system 

in Eq.(3) is determined by the eigenvalues of the transition matrix, G(𝑎, 𝜏, 𝜽𝑚). If all of the eigenvalues 

are inside the unit circle on the complex plane, the system is stable, otherwise, it is unstable (i.e. chatter 

occurs). Since modal parameters (𝜽𝑚) are random, according to Eq.(2), eigenvalues of the transition 

matrix are also random. Assuming that the modal parameters are normally distributed around their 

nominal values, second-order perturbation method can be used to determine the mean and variance of 

the eigenvalues of the associated transition matrix. Because the system stability is determined by the 

eigenvalue that has the greatest moduli, we will only consider that eigenvalue hereafter. Let 𝜇𝑟(𝜽𝑚) be 

the largest eigenvalue of the transition matrix for spindle rotation period 𝜏𝑟 and cutting width 𝑎𝑟, i.e. 

𝑮(𝑎𝑟 , 𝜏𝑟 , 𝜽𝑚). The probability distribution of this eigenvalue is then normal with the following mean 

and variance [17]: 

 
�̅�𝑚 = 𝔼[𝜇𝑚(𝜽𝑚)] = 𝜇𝑚(0) +

1

2
Trace (𝚺𝜃𝐃𝜇)

𝔼[(𝜇𝑚(𝜽𝑚) − �̅�𝑚)(𝜇𝑚(𝜽𝑚) − �̅�𝑚)∗] = 𝒅𝜇
𝑇𝚺𝜽𝒅𝜇∗ +

1

2
Trace (𝚺𝜃𝐃𝜇Σ𝜃𝐃𝜇∗)

 (7) 

 

68



 

 

where Σθ is the covariance matrix for the joint normal distribution of θm, and dμ and Dμ are the gradient 

vector and Hessian matrix of eigenvalue derivatives with respect to θm, respectively. Note that, the 

eigenvalues of the real-valued transition matrix consist of complex conjugate pairs that are designated 

μr and μr
*. The equivalent continuous-time frequency (ωr) and damping ratio (ζr) of each eigenvalue 

(discrete-time pole) are  

 ω𝑟(𝜽𝑚) = √λ𝑟(𝜽𝑚)λ𝑟
∗(𝜽𝑚),    ζ𝑟(𝜽𝑚) =

−ℜ(λ𝑟(𝜽𝑚))

ω𝑟(𝜽𝑚)
 (8) 

where 𝜆𝑟(𝜽𝑚) = ln 𝜇𝑟(𝜽𝑚) /Δ𝑡 is the equivalent continuous-time pole and ℜ stands for the real part 

of a complex number. Note that, ω and ζ denote both the parameters of the closed-loop pole and modal 

parameters of the open-loop system in Eq.2; indices r and n are used to distinguish between the open 

and close loop parameters. In the next section, the closed-loop pole will be identified for a set of r=1..Nr 

combinations of spindle rotation period and width of cut (τr, ar).  

3. BAYESIAN MODEL UPDATING 

Let �̂�𝑟𝑠 and 𝜁𝑟𝑠  be the frequency and damping ratio values of the dominant closed-loop pole identified 

by OMA of acceleration signals measured at r=1..Nr combinations of spindle rotation period and width 

of cut (τr, ar). At each combination, OMA is repeated s=1..Ns times. Each of the identified closed-loop 

poles can be predicted by substituting a given set of θm in the discrete-time domain model of Section 2: 

 
�̂�𝑟𝑠

𝜔𝑟(𝜽𝑚)
= 1 + 𝜀𝑟𝑠;   

𝜁𝑟𝑠

𝜁𝑟(𝜽𝑚)
= 1 + 𝑒𝑟𝑠 (9) 

 

where 𝜀𝑟𝑠 and 𝑒𝑟𝑠 are frequency and damping prediction errors. Following the Maximum Entropy 

theorem, we assume both 𝜀𝑟𝑠 and 𝑒𝑟𝑠 are independently zero-mean Gaussian processes with known 

covariance values, 𝜎𝜔
2  and 𝜎𝜁

2,: 

 𝑝(ε𝑟𝑠 , 𝑒𝑟𝑠) = 𝒩 ([
0
0
] , [

𝜎𝜔
2 0

0 𝜎𝜁
2]) (10) 

 

Consequently, the measured closed-loop poles can also be assumed normally distributed (and left-

truncated at zero): 

 

𝑝(�̂�𝑟𝑠 ∣ 𝜽𝑚, 𝑴) = cωexp [−
1

2
(
1 − �̂�𝑟𝑠/𝜔𝑟(𝜽𝑚)

𝜎𝜔
)
2

] 

𝑝(𝜁𝑟𝑠 ∣ 𝜽𝑚, 𝑴) = cζexp [−
1

2
(
1 − 𝜁𝑟𝑠/𝜁𝑟(𝜽𝑚)

𝜎𝜁
)

2

] 

(11) 

Since the identified damping and frequencies are assumed statically independent, the joint conditional 

probability distribution of the observed experimental data 𝑫 = [𝜔𝑟𝑠, 𝜁𝑟𝑠]
𝑇 , 𝑟 = 1. . 𝑁𝑟 and 𝑠 = 1. . 𝑁𝑠, 

is expressed as follows: 

 𝑝(𝑫 ∣ 𝜽𝑚, 𝜎𝜔 , 𝜎𝜁) = c exp 

(

  
 

−
1

2
∑  

𝑁𝑠

𝑗=1

∑  

𝑁𝑟

𝑟=1

(

 
 (1 −

�̂�𝑟𝑠

𝜔𝑟(𝜽𝑚)
)
2

𝜎𝜔
2 +

(1 −
𝜁𝑟𝑠

𝜁𝑟(𝜽𝑚)
)
2

𝜎𝜁
2

)

 
 

)

  
 

 (12) 

with the constant c normalizing the integration of the probability distribution function to unity. Equation 

(12) represents the likelihood of the identified poles given the model parameters θm. Prediction error 

covariances, 𝜎𝜔
2  and 𝜎𝜁

2, determine the weights of contributions from frequency and damping prediction 
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errors to the likelihood function. If the contribution weight from either of those two sources dominates 

the likelihood function, the information gained from the other source might be unused in the parameter 

updating process. To avoid this, following the approach presented by Goller et al. in [18], we introduce 

a new parameter 𝛼 = 𝜎𝜁/𝜎𝜔and use that to generate various model classes such that: 

 𝑝(𝑫 ∣ 𝜽,Mk) = c exp 

(

  
 

−
1

2
∑  

𝑁𝑠

𝑗=1

∑  

𝑁𝑟

𝑟=1

(

 
 (1 −

�̂�𝑟𝑠

𝜔𝑟(𝜽𝑚)
)
2

𝜎𝜔
2 +

(1 −
𝜁𝑟𝑠

𝜁𝑟(𝜽𝑚)
)
2

𝛼2𝜎𝜔
2

)

 
 

)

  
 

 (13) 

where 𝜽 = [𝜽𝑚, 𝜎𝜔]𝑇 is the vector of model parameters to be updated, and M𝑘 shows the class of 

models with 𝛼𝑘
2 ratio between covariance of frequency and damping prediction errors. A set of model 

classes with 𝛼1, . . , 𝛼𝐾 are considered and the most plausible class (according to the observed data) is 

chosen for updating. Therefore, the overall model updating process consists of two steps. The first step 

updates the model parameters 𝜽 within each model class 𝑀𝑘, and the second step determines the model 

class that better describes the observed data. Both of these two steps apply Bayes’ rule, as explained in 

the following sections.   

3.1. Updating of model parameters 

Starting with a prior probability distribution for the model parameters, 𝑝(𝜽 ∣ 𝑀𝑘), we use the general 

Bayes’ rule to determine their posterior probability distribution based on the information gained from 

experimental (OMA) observations, as follows: 

 𝑝(𝜽 ∣ 𝑫,𝑀𝑘) =
𝑝(𝑫 ∣ 𝜽,𝑀𝑘)𝑝(𝜽 ∣ 𝑀𝑘)

𝑝(𝑫 ∣ 𝑀𝑘)
 (14) 

 

where 𝑝(𝑫 ∣∣ 𝑀𝑘 ) = ∫ 𝑝(𝑫 ∣∣ 𝜽,𝑀𝑘 )𝑝( 𝜽 ∣∣ 𝑀𝑘 )𝑑𝜽 is marginal likelihood or model evidence. 

Marginal likelihood is a normalizing constant that forces the integral of 𝑝(𝜽 ∣ 𝑫,𝑀𝑘) to be equal to 

unity, but it also has great importance in selecting the most plausible model class among the considered 

classes (i.e. model selection). Numerical or analytical computation of model evidence becomes 

intractable when the likelihood function includes multiple model parameters and is highly peaked. 

Instead, Transitional Markov Chain Monte Carlo algorithm is used to estimate the model evidence while 

also generating samples from the posterior distribution 𝑝(𝜽 ∣ 𝑫,𝑀𝑘) as demonstrated in the examples 

presented in Section 4 [19].   

3.2. Model class selection 

Bayes’ rule can also be applied to determine the probability (plausibility) of a certain model class 

describing the observed data. Consider the set of K model classes 𝑴 = {𝑀1, . . . , 𝑀𝐾} with a uniform 

prior probability for each model class. Similar to Eq. (14), the posterior probability of each model class 

is obtained by applying the general Bayes’ rule: 

 𝑝(𝑀𝑘 ∣ 𝑫) =
𝑝(𝑫|𝑀𝑘)

𝑝(𝑫)
 (15) 

 

Because the denominator of Eq.(15) is a normalizing constant, the model class with the greatest 

evidence (marginal likelihood), 𝑝(𝑫|𝑀𝑘), has the highest posterior probability conditioned on the 

observed experimental data.  
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4. EXPERIMENTAL RESULTS 

The turning setup shown in Figure 1 was used in [11] to identify the dominant closed-loop poles of the 

system dynamics by OMA. In this work, we use the same identified poles for updating the modal 

parameters of the tool, which were initially measured by impulse hammer tests and are shown in Table 

1. The workpiece material was Aluminium 6061 with cutting force coefficients 𝑘𝑡𝑐 = 635 and 𝑘𝑓𝑐 =

159 MPa. Acceleration response to the machining forces was measured using M=2 accelerometers 

mounted in Z-direction and M’=2 accelerometers in Z-direction. Modified Least Squares Complex 

Exponential (LSCE) method was used to identify the frequency and damping of the dominant closed-

loop pole under a set of operational conditions [11], [20]. Because the rotational speed of the spindle is 

precisely regulated at the commanded value, the modified LSCE method can effectively remove the un-

damped harmonics from the system response and identify its damped poles. The dominant pole was 

identified at Nr=5 combinations of spindle speed and width of cut, and identification was repeated Ns=10 

times at each combination by using randomly selected segments of the measured response. The mean 

value and standard deviation of the identified poles are shown in  

Table 2. Sensitivity analysis in  [14]  showed that the closed-loop poles in  

Table 2 are mainly affected by variations in the parameters of the second mode shown in Table 1; 

therefore, only 𝜃𝜔2, 𝜃𝜁2, and 𝜃𝜙2 will be updated based on the identified poles.  

Table 1. Modal parameters of the tool obtained by impulse hammer test under non-operational conditions. 

Mode 

n 

Frequency 

𝜔𝑛/2𝜋 𝜁𝑛 𝝓𝑛
𝑇 = [𝑍1, 𝑌1] 

[Hz] [-] [√𝐾𝑔−1] 

1 1842 0.021 [2.8,-0.9] 

2 2445 0.009 [0.9,2.6] 

 

Table 2: Dominant closed-loop poles identified by modified LSCE at 𝒓 = 𝟏. . 𝟓 spindle speed and cutting width 

combinations. Mean values and standard deviations are computed based on 𝑵𝒔 = 𝟏𝟎 repetitions of the 

identification using randomly selected segments of the recorded acceleration signals  

r 
60

𝜏𝑟
  [rev/min] 𝑎𝑟[mm] �̂�𝑟𝑠/2𝜋 [Hz] 𝜁𝑟𝑠 

1 7150 2.286 2473±0.56 0.12±0.014 

2 7150 2.54 2477±0.28 0.06±0.005 

3 6950 2.54 2508±0.30 0.19±0.007 

4 7500 2.032 2476±0.33 0.09±0.005 

5 7500 2.54 2476±0.39 0.02±0.004 

 

Similar to  [14], the prior distribution of 𝜃𝜔2 is assumed to be zero-mean normal with 0.001 variances 

and truncated at ±0.03. The prior distributions of 𝜃𝜁2 and 𝜃𝜙2 are also assumed to be zero-mean normal 

with 0.05 variance and truncated at ±0.8. The prior distribution of prediction error variance, 𝜎𝜔, is 

assumed to be uniform across 1 × 10−10 and 5 × 10−6.  

The improved Transitional Markov Chain Monte Carlo (iTMCMC) algorithm presented in [19] was 

used to generate samples from the posterior distribution of the model parameters according to the 

assumed priors and the likelihood function defined in Eq.(13). To generate one sample by iTMCMC, 

the likelihood function and thereby the eigenvalues of the corresponding transition matrix (G)  must be 

computed several times for different model parameters (𝜽). The transition matrix usually has large 

dimensions depending on the resolution of time discretization. In this example, the system poles 

converge with acceptable accuracy when the delay period is divided into m=200 time intervals, which 

would lead to an 804 × 804 transition matrix. Considering the large dimension of the transition matrix 
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and the fact that generating thousands of samples by iTMCMC requires several thousands of times 

evaluating the eigenvalues of the transition matrix at various values of 𝜽, the direct computation of the 

eigenvalues is computationally inhibiting and surrogate models of 𝜔𝑟(𝜽𝑚) and 𝜁𝑟(𝜽𝑚) must replace 

direct computation. In this work, we use Gaussian Process Regression (GPR) with a squared exponential 

kernel to build surrogate models based on the eigenvalues computed for a uniform grid of model 

parameters within the truncation limits of their prior distribution [21]. The GPR model is then used to 

predict the closed-loop frequency and damping at any arbitrary combination of model parameters. Note 

that generating the training data in this approach still requires eigenvalue computation at many 

combinations of modal parameters (4096 eigenvalue computations in this work), which is very time-

consuming (about two hours using a consumer-grade computer). However, this computation is 

performed only once and the trained GPR model can be used any time the closed-loop poles at an 

arbitrary combination of modal parameters are needed in the iTMCMC algorithm.   

The iTMCMC algorithm was used to generate 5000 samples from the posterior distribution of the model 

parameters for 12 model classes with 𝛼𝑖 = 2𝑖+2, 𝑖 = 1. .12. Model evidence (log marginal likelihood) 

for each model class was also computed by iTMCMC and is shown in Figure 2. Model evidence 

becomes maximum at 𝛼 = 512, indicating the highest plausibility of this model compared to the other 

11 model classes. Therefore, this model class is selected for parameter updating.  

 

Figure 2: Model evidence (Log marginal likelihood) for model classes with 𝜶𝒊 = 𝟐𝒊+𝟐, 𝒊 = 𝟏. . 𝟏𝟐 

For the selected model class, 25000 samples were generated from the posterior distribution of the four 

model parameters. Parts (a-d) of Figure 3 show the histograms of each model parameter and the other 

parts show 2-D views of the joint distribution. Samples generated from prior distributions are also 

shown with light grey points in the same figure. The posterior distribution is densely concentrated 

around the updated model parameter values. Although there are two distinct peaks in the distribution, 

one of the peaks is significantly larger than the other, indicating the higher probability of the 

corresponding model parameters describing the identified poles.  

Figure 4 shows samples of the posterior distributions for the same example, except that the prior for all 

of the four model parameters are assumed to be uniform across their truncation ranges. This figure also 

shows that the updating process considerably reduces the parameter uncertainty in the prior distribution, 

however, the probability of the parameters at the two peaks are now similar to one another and more 

data is needed to further reduce parameter uncertainty. This additional data was provided by the normal 

prior defined based on impulse hammer test results in Figure 3; when hammer test results are not 

available, additional information can be obtained by OMA under additional cutting width and spindle 

speed combinations. 
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Figure 3: Samples from normal prior and updated posterior distributions of model parameters for model class 

with 𝜶 = 𝟓𝟏𝟐 

The posterior distribution of model parameters shown in Figure 3 resembles multi-modal Gaussian. A 

two-mode Gaussian mixture model was fitted to the samples in that figure and the parameters of the 

first peak (with higher probability) were used to represent the probability distribution of the model 

parameters after updating: 

 [

𝜃𝜔2

𝜃𝜁2

𝜃𝜙2

] = 𝑁 ([
0.0057
0.2112
0.1158

] , [
0.00012 −0.00638 −0.00260

−0.00638 1.1710 0.52401
−0.00260 0.52401 0.26105

] × 10−3) (16) 

A grid of points was considered on the spindle speed and cutting width plane and the mean and variance 

of the largest eigenvalue of the transition matrix at each point were obtained by substituting the mean 

and variances from Eq.(16) in Eq.(7). Figure 5 shows the border between the points with unstable 

eigenvalues and those with entirely stable eigenvalues. The curve of the mean values is the contour plot 

of the eigenvalues with unit modulus. The upper/lower credibility bounds are determined by the contour 

plot of the eigenvalues plus/minus one standard deviation equal to unity. Also shown in this figure are 

experimentally determined stable (circles) and unstable (crosses) combinations of speed and width, all 

of which agree with the stability borders established by the updated model parameters. For comparison, 

the mean curve of the stability diagrams obtained by the prior estimate of modal parameters (Table 1) 

is also shown in this figure, which over-estimates the stability limit at 7300 rev/min spindle speed. 

Notice that only five of the stable points (P1-P5) were used in updating and the points at 7300 rev/min 

were used only for validation.  
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Figure 4: Samples from a uniform prior and updated posterior distributions of model parameters for model class 

with 𝜶 = 𝟓𝟏𝟐 

 

 

Figure 5: Stability Lobe Diagrams (SLD) with credibility bounds. Circles and crosses are experimentally 

determined stable and unstable points, respectively. P1-P5 are the stable points used in model updating 
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5. CONCLUSIONS 

Bayesian model updating was used to determine the probability distributions of the tool modal 

parameters in a discrete-time domain model of chatter in turning. The likelihood function in Bayesian 

updating was defined based on the surrogate of the discrete-time domain model to circumvent 

computationally expensive eigenvalue computations. The updated chatter model was used to determine 

the probabilistic limits of chatter on the plane of spindle speed and cutting width.  

The presented model was shown to considerably improve the accuracy of the chatter model. However, 

the updated parameters depend on their assumed prior distribution when sufficient experimental data is 

not available (from OMA). The tool modal parameters obtained from impulse hammer tests can provide 

a reasonable assumption for the prior distribution. Alternatively, the automated OMA of the vibration 

signals during the process can inject new information into the updating process to progressively reduce 

uncertainty in the distributions of the modal parameters. Automated OMA in machining is difficult 

because of the dominance of undammed harmonics generated by the spindle rotation, and this remains 

a key challenge to be addressed in future.  
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ABSTRACT

Identifying the modal properties of mechanical engineering systems while these are under operating con-
ditions is still associated with major challenges, especially when said operation is induced by rotation
of components. In this case, ambient vibration excitation, which is typically assumed for the applica-
tion of output only techniques, is superposed by a deterministic periodic excitation component. This
paper studies different techniques to perform an operational modal analysis in this particular situation.
The methods are applied to an axial compressor test rig at the Institute of Turbomachinery and Fluid-
Dynamics. Among them, three approaches, the Hilbert-Huang transform, the Bayesian OMA, and the
stochastic subspace identification, are investigated. For the stochastic subspace identification, two dif-
ferent pole picking techniques to automatize the selection of stable poles from the stability diagram are
studied. Furthermore, various approaches to deal with the harmonic excitation, which can lead to falsely
identified modal parameters in the analysis process, are presented and applied to the data sets. Measure-
ments at different rotational speeds of the rotor were collected and are used for the analysis. The results
are summarized and the relative strengths and weaknesses of the different methods are discussed. The
results obtained in this study are a first step towards a digital model to monitor the vibration behavior of
rotating machinery using OMA techniques.

Keywords: axial compressor, Hilbert-Huang transform, stochastic subspace identification, pole picking,
harmonic detection
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1. INTRODUCTION

Operational modal analysis (OMA) has been broadly used in the civil engineering domain throughout
the last decades to determine the modal parameters of structures, such as high rise buildings, towers,
bridges, dams, and wind turbines. OMA is gaining more and more attention in the mechanical engi-
neering domain, where it is for example used for the identification of light weight structures such as in
the aerospace industry [1, 2]. Especially, the development of the stochastic subspace identification (SSI)
[3], considered a robust technique to perform the analysis on in-operation data, encouraged the spread of
OMA in different sectors. A challenge is caused by the existence of periodic excitation that occurs for
rotating machinery. In particular, closely spaced frequencies – eigenfrequencies and periodic excitation
frequencies – can lead to an erroneous evaluation [4]. For this reason, there are various methods dealing
with the elimination of the disruptive effect or the identification of harmonic modes, which are catego-
rized by Motte et al. [5]. Some of these procedures will be presented and discussed in more detail in the
following section.
Some examples for the application of OMA to mechanical engineering structures also in the presence
of rotation are given in the literature. Wilkes et al. studied the application and adaptation of OMA to
a centrifugal compressor [6]. The focus was on flow-induced excitation and the effects and structural
behavior of the five-stage rotor using proximity probes, examining different operating conditions, e.g.
different pressure fields. Arjmand and Bratek performed an OMA on different case studies such as a re-
ciprocating compressor and a steel pile foundation [7]. The relevant rotational speed was at a low range
between 270-330 rpm. Clarke et al. studied diesel engines of ship structures and discussed the problems
related to modal identification in the presence of harmonic excitation [8]. Carden and Lindblad showed
that even torsional modes of a reciprocating compressor, which are usually not speed dependent, have
different characteristics in standstill conditions than in operation. Their contribution proposes OMA as
a valuable method because other numeric tools such as finite element analyses partly fail to predict the
real operational behavior.
While the application of OMA has been studied on a number of real applications, in most cases only
a comparison between OMA (in general) and classical experimental modal analysis (EMA) has been
performed. The literature is lacking a comparison of different OMA techniques which can incorporate
the mentioned challenges. This should support finding a suitable method in order to treat data from a
high speed rotating application as accurately as possible. In addition, most research focuses on isolated
components, whereas a holistic approach taking into account the casing and foundation is often missing.
For this reason, different techniques from the literature were implemented and applied to a high speed
axial compressor test rig at the Institute of Turbomachinery and Fluid-Dynamics (TFD), Leibniz Univer-
sity Hannover. This test rig consists of a rotor, assembled casing components, and a concrete and steel
foundation. The results gained from the different methods are discussed and compared amongst each
other. The ultimate purpose of this research and the modal identification in operation, is to contribute to
structural health monitoring (SHM). This contribution, brings the long term objective of a digital twin,
which is increasingly demanded by the industry for the reliable operation of complex capital goods, a
step closer.

2. METHODOLOGY

As explained in the introduction, different techniques have been implemented in a toolbox in order to
analyze the axial compressor data from the test rig at TFD. The studied configuration consists of a single
stage rotor with a nominal speed of 17100 rpm. Previous results, as well as the setup of the test rig can
be found in [9, 10]. For the analysis, data from different rotational speeds were measured at stationary
operating conditions with a sampling rate of 25.6 kHz. In the following, three OMA techniques are
implemented; afterwards, two applied clustering techniques are described, and finally, several methods
for the harmonic detection are presented.

Hilbert-Huang Transform
The Hilbert-Huang transform (HHT) is based on the empirical mode decomposition, which decomposes
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the time signal into intrinsic mode functions (IMF) [11]. In a consecutive step, an estimate of the free
vibration response is extracted from the IMF using the random decrement technique (RDT) [12]. The
assumption is that the signal is composed of a deterministic and a stochastic part. The deterministic
part represents the vibration response, and the stochastic part is assumed to be caused by noise, and it
is further assumed, that this component can be eliminated when averaging the time signal over enough
time segments. The signal of the free vibration response is then transformed into Hilbert space. The
eigenfrequency ω0 and damping D are obtained from

ω(t) =
dϕ(t)

dt
= ωd (1)

ln(ŷ(t)) =−Dω0t + ln(q̂) (2)

with the quasi eigenfrequency ωd , ŷ = q̂e−Dω0t , and ϕ(t) = ωdt +ϕ0, where q̂ is the amplitude and ϕ

the phase of the signal. Usually a least squares fit algorithm is used to solve these equations. A flow
chart of the procedure is illustrated in Fig. 1. The advantage of the HHT method over other techniques

Vibration signal

Empirical Mode Decomposition

Intrinsic Mode
Function

Free Vibration

Random Decrement Technique

Hilbert Transformation and Least-Square Fit

Modal Parameters

Figure 1: Process of Hilbert-Huang transform

is the possibility to process time variant data and even data which is captured from nonlinear systems.
The implementation used in the presented work fits the signal to the vibration response of a system with
a single degree of freedom (DOF), which does not cover nonlinearities, as nonlinear behavior of the
structure was not observed, cf. [10]. This technique cannot be used to calculate eigenvectors, as only a
single channel can be treated simultaneously for the analysis.

Bayesian OMA
The Bayesian OMA approach considers modal parameters as randomly distributed variables. The pro-
cedure intends to determine their probability distribution. It is based on the Bayes’ theorem

P(Φ|yk) =
P(yk|Φ)P(Φ)

P(yk)
(3)

with P the probability of Φ a set of modal parameters and yk the measured vibration data. Equation (3)
describes the probability of an event A (=̂Φ) under the condition that the event B (=̂yk) has occurred.
P(Φ|yk) can be estimated using a likelihood function. In our implementation, the Bayesian OMA al-
gorithm is based on the fast Fourier transform (FFT) of the vibration data as described in the work of
Au [13]. It enables the identification of a single mode in the selected frequency band by minimizing a
simplified negative log-likelihood function (NLLF).

Stochastic Subspace Identification
The SSI is one of the broadly used methods to study the structural behavior from in-operation data. It
is known as a robust method and performs the analysis in the time domain. This method is based on
the state space representation of a dynamic system. The objective is to identify the system matrices A
(state matrix) and C (output matrix), which contain the structural information on the dynamics of the
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underlying system. It is assumed to be observable according to the Kalman criterion. A subspace matrix
H is constructed by means of the measured values. A singular value decomposition is applied to H in
order to obtain the observability matrix O. This in turn contains the system matrix A with the necessary
information. A detailed description of the procedure can be found in [14].

Clustering Techniques
The application of the SSI, leads to a stabilization diagram with poles over the calculated model order,
which can be selected by the user. A very simple, but unfortunately often not very satisfying, approach is
to choose the stable poles which are obtained for the highest model order. These selected poles, however,
are not necessarily the ones describing the real dynamics of the system. Often there are ”artificial poles”,
which have a mathematical, but no physical meaning. In order to select only those poles, which do have a
physical meaning, several automated techniques have been proposed, which choose the most appropriate
poles from the stability diagram. Hence, a multistage clustering algorithm (MSC), and a fuzzy-c-means
clustering scheme (FCM) were implemented and tested within the toolbox [15, 16]. Reynders et al. de-
veloped a fully automated OMA using a MSC technique, which is implemented in the following three
steps [15].

1. Application of soft and hard validation criteria (SVC, HVC) to separate the modes in non-physical
and potentially physical modes using k-means clustering.

2. Application of hierarchic clustering and definition of mode sets.

3. Division of mode sets into non-physical and physical mode-sets using k-means clustering and
selection of physical modes.

In total, nine criteria were implemented for the first step. The SVC contain three dimensionless distances
for frequency, damping and eigenvalue, as well as the modal assurance criterion (MAC), the mode phase
complexity (MPC), and the mode phase deviation (MPD), which can have values between 0 and 1.
The values for the HVC in turn can only be exactly 0 or 1 and include limitations for damping values
(D > 0/D < 0.2), and the postulate of conjugate complex eigenvalues. The algorithm is adjusted so that
only a single pair of the complex conjugate eigenvalues is identified as a physical mode. The k-means
clustering divides a data set in k clusters. The objective is to minimize the sum of squared deviations
from the cluster centers.
Another clustering method, the so-called fuzzy-c-means algorithm, was proposed by Scionti et. al. [16].
It is based on the division of the data set into a set of clusters. It further estimates stable poles according
to a membership matrix U, which describes the affiliation of the data points to a cluster, that is being
constantly updated until a termination criteria is reached. The minimum affiliation umin is set to 0.95.
Modes, which have a lower value than umin are eliminated. Only stable poles, which are determined by
simple stability criteria applied to the stability diagram, are passed on to the algorithm. In this case, the
stability criteria between two poles is set to ∆ f = 1% and ∆D = 30%. It is important to choose the right
number of initializing clusters, as otherwise the algorithm can lead to an incorrect number of identified
modes.

Harmonic Detection
As mentioned in the introduction, a major challenge for the modal parameter identification of rotating
machinery is caused by the superposed harmonic excitation due to the rotation. Motte et al. suggested to
divide possible procedures into four categories [5]:

1. statistically driven identification,

2. pre-processing techniques,
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3. modification to existing identification techniques, and

4. input spectrum independent techniques.

One statistically driven approach is based on the calculation of the kurtosis k, which is the fourth sta-
tistical moment of the probability distribution of a random variable. Equivalently the excess can be
calculated, which is defined as k− 3. In the presence of harmonic modes, the excess equals -1.5. An-
other procedure is to use the probability density function (PDF) itself for the harmonic detection. The
PDF for a structural mode has only one peak, whereas the PDF for a harmonic mode has two peaks. This
can be explained by the fact that a stochastic load leads to a response with a PDF close to a Gaussian
distribution. However, a harmonic response has a PDF of p(x) = 1

π
√

a2−x2 ,x ∈ [−a,a] with the amplitude
a that goes to infinity for x→ a and x→−a and therefore has two distinct peaks [17]. This technique
can also identify mathematical modes by the shape of the PDF and works well as long as the modes are
not too strongly damped. A modification to existing techniques, which consider the periodic excitation
can be made for the SSI through matrix extension considering the additional harmonic excitation. In this
paper the method by Dong et al. is implemented [18]. Another way to treat the periodic excitation is
by pre-processing techniques, such as filters. Here, the periodic frequency needs to be known before the
analysis. This is usually the case, but it has to be considered that filters can change the whole data set, so
the user needs to take care that results are not modified in an undesired way [4].

3. RESULTS

The results presented in the following section are obtained from the high speed axial compressor test rig
at TFD shown in Fig. 2. Figure 2 (a) depicts the 49 positions of the uniaxial acceleration sensors attached

(a) (b) (c)

Figure 2: (a) Sensor positions on axial compressor (b) Instrumented axial compressor (c) Single stage rotor. Axial
compressor test rig at TFD.

to the test rig for data acquisition. Figure 2 (b) illustrates the compressor with the casing components
(inlet, stator housing, and outlet) each divided into two parts and assembled by screw connections, as
well as the bearing support, where the components are mounted. Figure 2 (c) shows the single stage
compressor in the fluid film bearings, which was used to conduct the experiments. From EMA of the

(a) (b) (c) (d)

Figure 3: (a) Compressor with grid lines from mode shape animation: (b) 65 Hz; (c) 111 Hz; (d) 132 Hz. First
three mode shapes obtained from EMA of casing with rotor at rest.
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test rig three characteristic modes were identified, namely the first rigid body mode at 65 Hz, where
the whole structure moves in the y-direction, the second rigid body mode at 111 Hz where the structure
moves in the x-direction, and the first bending mode at around 132 Hz, where a strong deflection of
the inlet casing in the y-direction can be observed. A projection of the mode shapes into the horizontal
x-y-plane is shown in Fig. 3. The objective in the following analysis is the identification of these three
modes using the different OMA techniques.

Hilbert-Huang Transform
The knowledge of the frequency range of the sought-after eigenfrequency was used to choose the right
limitation of the bandpass filter before the analysis. In Tab. 1 the results applying the HHT for different
rotational speeds, as well as the results obtained from one measurement during a run down of the com-
pressor are compared. Different frequency ranges were applied for the analysis between 50 and 150 Hz

Table 1: Comparison of results from HHT
rotational speed [rpm] rotor state filter range [Hz] frequency [Hz] damping [%]

3900 Ref
50-80 64.9 0.22

105-120 114.6 0.74
120-150 129.7 0.14

6600 Ref
60-80 61.4 1.89

100-120 110.1 0.01
130-140 134.8 1.12

7800 Ref
60-80 61.6 1.86

105-115 112.6 1.12
120-150 130.0 0.01

15390 Ref
50-80 58.8 0.41

105-115 108.0 2.19
125-140 137.6 0.78

142.1 1.20

17100 Ref
50-80 65.5 0.12

100-120 111.1 1,56
120-150 132.4 0.67

15390 U1
50-80 58.6 0.68

105-115 109.5 3.14
125-140 137.8 1.72

15390 U2
50-80 58.8 0.40

105-115 106.9 3.10
125-140 137.4 1.13

17100-3000 Run down
50-80 62.9 4.11

100-120 112.0 3.88
120-150 130.6 4.55

in order to find the three sought-after eigenfrequencies. The results for frequency and damping were cal-
culated for different sensors, as well as different time segments as input for the RDT. The results shown
in Tab. 1 are averaged over three sensors, one on the inlet casing, one on the loose bearing support,
and one on the outlet casing, as well as for two different time segment numbers (1000, and 2000). A
comparison of the results from sensors over all components of the axial compressor for a rotational speed
of 3900 rpm showed, that the maximum deviation fmax− fmin

fmax
of the identified eigenfrequencies is around

0.3%. The estimates for the damping showed a large relative deviation among the individual results, but
in general the estimated damping has a very small level. In Tab. 1 the rotation synchronous frequencies,
which were identified for the datasets at 3900 rpm, 6600 rpm, and 7800 rpm are depicted. These are in
case of 3900 rpm 64.9 Hz (first harmonic) and 129.7 Hz (second harmonic), 110.1 Hz in case of 6600
rpm and 130.0 Hz in case of 7800 rpm. These results show that the harmonic modes will be identified
by the different algorithms, if no procedure for the elimination or detection is applied. These harmonic
frequencies were identified with all three OMA techniques and will not be depicted in the following
as they can clearly be identified due to the known rotational speed. In case of the 15390 rpm dataset
two eigenfrequencies, which are close to each other, are identified in the same frequency range of the
bandpass filter. The lower frequency at approx. 138 Hz was found for a time segment number of 1000
whereas the higher frequency at 142 Hz was found for 2000 time segments. The rotational speed of
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15390 rpm (90% of the nominal speed) is chosen as a reference case for the investigation of the system
under unbalance excitation. To this end, two levels of unbalance were intentionally introduced in the
system, which are denoted by U1 and U2 in the following. U1 has an additional mass of 3.47 g in plane
1 and U2 has an additional mass of 3.49 g in plane 2. The unbalance masses decreased the balance qual-
ity by a factor of approximately 2.5. For the third sought-after eigenfrequency only the lower frequency
at around 138 Hz will be considered in the comparison. As expected, the additional unbalance mass did
not alter the extracted eigenfrequencies. Damping values for the time variant data are higher by a factor
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Figure 4: (a) HHT at 15390 rpm reference (b) HHT at 15390 rpm unbalance 1. HHT at 15390 rpm – comparison
of the different steps for the reference and unbalance 1 case.

of approx. four compared to the stationary operating points, which can be explained by varying speed
dependent friction and clearance conditions during the run down. The variation of the number of time
segments has an insignificant impact on the frequencies identified. The filter order, which was set to two,
is necessary as otherwise the speed synchronous frequency dominates the evaluation. Next to the three
eigenfrequencies of interest, another frequency at around 90 Hz was identified for a different frequency
range. Figure 4 shows the results for the different algorithm steps from two evaluations with the HHT.

Bayesian OMA
For the analysis with the Bayesian OMA, Welchs’ method and a window length of 512 samples are se-
lected. A variation of the downsampling factor, which was set to 40, and the window length did not alter
the modal parameters. Table 2 shows the identified modal parameters for the different data sets, as well
as their standard deviation calculated with this method. In Tab. 2 only the results corresponding to the
three relevant frequencies are shown. For two datasets, 7800 rpm and 15390 rpm, again two frequencies,
which are close to each other, are identified. For 7800 rpm frequencies at around 140 Hz and 145 Hz
and for 15390 rpm frequencies at 138 Hz and 142 Hz are found. The frequency values obtained for the
17100 rpm dataset agree well with the values found for the EMA. Next to the results in Tab. 2, frequen-
cies at approx. 80 Hz, 90 Hz, and 120 Hz are identified, which are not consistent with the frequencies
in standstill condition. The reason for this will be explained in detail later. Figure 5 shows the selected
frequency bands for the analysis of the 15390 rpm data set and the values received from the minimization
of the NLLF.
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Table 2: Comparison of results from Bayesian OMA
rot. speed [rpm] rotor state frequency [Hz] freq. deviation [Hz] damping [%] damp. deviation [pp.]

3900 Ref
54.9 0.008 2.27 1.06

108.4 0.009 0.66 1.05
147.0 0.008 0.47 1.00

6600 Ref 61.3 0.008 0.14 0.98
146.5 0.008 0.90 0.98

7800 Ref
61.3 0.009 1.01 1.12

112.7 0.010 0.54 1.28
139.9 0.009 0.78 1.05
145.5 0.012 0.63 1.41

15390 Ref
58.9 0.007 0.17 0.84

109.3 0.009 2.26 1.17
138.2 0.128 0.26 1.45
142.2 0.009 0.09 1.12

17100 Ref
65.3 0.006 0.18 0.70

109.4 0.008 0.56 0.95
132.3 0.007 0.91 0.90
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Figure 5: (a) Selected frequency ranges for analysis at 15390 rpm reference; (b) Contour plot of optimized modal
parameters of 110 Hz at 15390 rpm reference. Analysis with Bayesian OMA for 15390 rpm reference.

SSI
In the toolbox, the covariance-driven, as well as the data-driven SSI approach are implemented. A
comparison of the computational resources for the covariance-driven and the data-driven SSI approach
has been performed in [10] showing that the covariance-driven method is less time-consuming. Thus,
it is preferably used in the ongoing analysis. The results using the SSI technique are displayed in Tab.
3. The variation of the window length for the calculation of the power spectral density does not have an
impact on the eigenfrequencies identified. Figure 6 depicts two stability diagrams for a rotational speed
of 3900 rpm with the regular SSI and the extended SSI that can consider harmonic frequencies and should
eliminate them as stable frequency line. Considering the harmonic excitation in the SSI algorithm did
not change the stable frequency lines in the stability diagram. For this reason, the presented harmonic
detection method does not seem to work well with the axial compressor data. The frequency results
are equal using the usual and the extended SSI and the harmonic frequencies are identified as stable
frequency lines in the extended SSI. For the SSI the same characteristics as for the Bayesian OMA are
observed. The datasets for 7800 rpm and 15390 rpm show frequencies that are close to each other around
140 Hz and the identified frequency values at 17100 rpm match the standstill results well. Fig. 7 shows
an example of the MAC matrix for the 7800 rpm dataset confirming that the frequencies at around 140
Hz and 145 Hz are representing different modes. Again the SSI identifies additional stable frequencies
at around 80 Hz, 90 Hz, and 120 Hz. Lastly, the covariance-driven and the data-driven approach were
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Table 3: Comparison of results from SSI
rotational speed [rpm] rotor state method frequency [Hz] damping [%]

3900 Ref cov
56.2 1.13
108.6 0.16
146.4 0.08

3900 Ref cov harmonics
56.1 1.24
108.6 0.17
146.4 0.09

6600 Ref cov 61.3 0.06
146.8 0.07

7800 Ref cov
61.6 0.92
112.6 0.28
140.3 0.11
145.8 0.35

15390 Ref cov
58.9 0.17
107.9 0.33
138.1 0.09
142.3 0.01

17100 Ref cov
64.9 0.02
109.5 0.38
134.3 0.03

15390 U1 cov
59.2 0.08
138.2 0.07
142.3 0.04

15390 U2 cov
58.8 0.2
138.2 0.07
142.2 0.06
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Figure 6: (a) Stability diagram at 3900 rpm; (b) Stability diagram at 3900 rpm using extended SSI for the elimi-
nation of harmonics. Stability diagrams at 3900 rpm SSI and extended SSI.

Figure 7: MAC matrix for eigenvectors identified from SSI at 7800 rpm

compared leading to a maximum deviation of 1% for the identified frequencies.

Clustering
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Table 4 contains the results performing the SSI and selecting the poles with the two automated pole
picking techniques MSC and FCM instead of choosing them manually as shown in Tab. 3. The initial

Table 4: Comparison of results from Clustering techniques
rotational speed [rpm] method MSC FCM

f D f D
6600 cov 61.3 0.06 61.3 0.06

7800 cov 61.6 0.97
112.5 0.29

15390 cov 138.1 0.09
142.2 0.11 141.8 0.08

17100 cov 64.8 0.14 65.4 0.15
109.5 0.43 109.3 0.40

17100 data 65.9 0.02 65.4 0.01
109.6 0.02 109.4 0.02

cluster number for the FCM method is set to 30 after performing a parameter study. This number has
shown to be most suitable in order to identify a reasonable number of clusters. The calculation time for
both clustering methods is compared using a work memory of 100 GB. The FCM method requires 6.6 s,
whereas the MSC procedure requires 14.2 s, averaged over ten analyses. For the data set at 17100 rpm
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Figure 8: (a) Selected modes for MSC; (b) Selected modes for FCM. Different cluster results for dataset at 17100
rpm with data-driven SSI.

the data-driven SSI and covariance-driven SSI are compared. While the MSC method is robust and
finds the same modal parameters for each run, the FCM method provides different results if performed
repeatedly. This can be explained by the random initialization of the clusters in the beginning of the
FCM algorithm. Additionally, the MSC identifies overall more of the sought-after frequencies and is thus
preferred. Nevertheless, not all of the eigenfrequencies that were found with the different OMA methods
are identified with the clustering techniques, thus their application for the identification of modes related
to rotating machinery requires further research. Again the clustering techniques identify frequencies
at around 80 Hz, 90 Hz and 120 Hz in some of the datasets. Figure 8 compares the selected modal
parameters for the stable clusters obtained by the MSC and FCM using the data-driven SSI approach.

Harmonic Detection
Next to the SSI extension for the consideration of harmonic frequencies, the PDF and kurtosis criterion
are applied to the results from the SSI to identify possible harmonic modes. Figure 9 (a) shows the PDF
for two potential modes identified for the 3900 rpm data set. The frequency around 65 Hz belonging to
the actual rotational speed can be clearly identified as a harmonic frequency by the shape of the PDF.
The excess criterion depicted in Fig. 9 (b) shows harmonic frequencies for 50 Hz, 65 Hz, 100 Hz, and
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Figure 9: (a) PDF of harmonic mode at 65 Hz and structural mode at 146 Hz for 3900 rpm reference (channel
1); (b) Excess of all channels for 3900 rpm reference, harmonic modes are marked with a pink star.
Harmonic detection using statistically driven identification.

130 Hz. 50 Hz and 100 Hz belong to the frequency of the power supply (first and second harmonic),
whereas 65 Hz and 130 Hz belong to the first and second harmonic of the test rig’s rotational speed. The
different lines in Fig. 9 (b) represent each one sensor of the total 49 sensors attached to the structure.
Another method to deal with the speed synchronous excitation is filtering the data. As described in the
literature, this technique alters the complete data set. The power spectral density shows a sharp drop at
the frequencies where the filter is applied. Additionally, new stable frequency lines are identified in the
stability diagram, which might be mathematical modes.

4. DISCUSSION

The focus of the presented analysis was to identify the first three modes of the axial compressor, which
were also found in standstill conditions (65 Hz, 111 Hz, 132 Hz). In operation more modes are identified
compared to the standstill conditions. This can be explained by the influence of the motor and gearbox
connected to the compressor. The total mass of motor and gearbox is approximately 8.1 t and thus these
components play a significant role in the vibrational behavior of the compressor (total weight of com-
pressor approx. 800 kg) and its modal parameters. The operation of the compressor induces vibrations
of the motor and gearbox and the whole system (containing compressor, gearbox, and motor) has to be
considered for the modal identification. In addition, the structural behavior of the test hall itself is not
considered in these results as the floor was not instrumented. It is assumed that it contributes to the
elastic behavior of the overall test rig. Table 5 compares the three identification processes presented in
this paper and shows their advantages and disadvantages. The speed comparison was performed with a
100 GB working memory averaging ten analyses. The time measured for the HHT does not include the
filter process. The speed for the execution of one HHT analysis is high and accelerates with an elevating
number of time segments. The high speed can be explained as only one time signal of a single sensor is
analyzed simultaneously. In contrast, the Bayesian OMA and SSI use all sensor signals for the analysis
and therefore demand a higher computational time. Moreover, it needs to be considered that for the
Bayesian OMA and HHT only one eigenfrequency can be evaluated simultaneously, whereas the SSI
yields a stability diagram with all eigenfrequencies in the frequency range of interest. As a conclusion,
the HHT does not seem suitable for the structural identification of rotating machinery. This is especially
true in this case, as no strong nonlinear behavior could be observed. The possibility of using HHT for
nonlinear data is clearly one of its strength. Nevertheless, it can be a good alternative if the frequencies
are already identified and validated. This technique can be used to confirm and check a frequency, e.g.
after a structural modification. However, the SSI has proven to be a reliable method. The clustering
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Table 5: Comparison of analysis methods
advantages disadvantages computational

speed
HHT

• analysis of single sensors,
ability to check data quality

• fast technique

• no calculation of eigenvec-
tors possible

• knowledge of eigenfrequen-
cies required

• use of bandpass filter for cer-
tain frequency range

0.7 s

Bayesian
OMA

standard deviation for frequency
and damping is calculated • simultaneous analysis of

only one mode possible (fit
of 1 DoF system)

• modes need to be separate

65.4 s

SSI
• robust and exact method
• can consider non-

proportional damping
(complex eigenvectors)

computationally intensive 175.0 s

schemes facilitate the parameter selection compared to the manual selection of poles from the stability
diagram, where a high expertise of the user is required. However, since the initialization process of the
FCM technique is random and can yield different results with each run, the MSC is preferred and still
offers an acceptable time frame for the analysis. The investigation with the statistically driven techniques
for the harmonic detection after performing the SSI showed that some of the identified frequencies are
related to harmonic excitation and that therefore the rotational influence, especially when close to struc-
tural modes, has a strong influence. The PDF seems suitable for the identification of harmonic modes.
Its strength is confirmed by its ability to also identify mathematical modes by the shape of the PDF. It
calculates the PDF for each channel, so that misleading channels can be detected and eliminated. It is
a simple and clear criterion, which can be applied to the data. Filters, however, are not recommended
for the harmonic detection as it is not clear why the filtered data yields new stable poles and the data
manipulation seems to be too strong. The SSI extension for consideration of harmonic effects did not
work successfully as shown in the presented results.

5. CONCLUSIONS

An extensive study on various data sets from the operation of an axial compressor test rig has been per-
formed in order to find a suitable method to handle this data and identify the modal parameters. Three
identification methods, namely the stochastic subspace identification, the Hilbert-Huang transform and
the Bayesian OMA have been tested. As already indicated by the literature, the stochastic subspace
identification has proven to be the most robust method, although it is also the most time-consuming one.
For the automatization of the pole picking process from the stability diagram, the multistage clustering,
as well as the fuzzy-c-means clustering have been studied. The fuzzy-c-means clustering is a promising
technique, but it also yields varying results with each run. For this reason, the multistage clustering based
on pre-defined criteria is a more robust method. For the harmonic identification the investigation of the
probability density function is recommended, as it is a clear method to separate structural from harmonic
modes.
More frequencies beyond those three considered so far, have been identified throughout the process.
These were presumably not found during the standstill measurements, as the motor was not specifically
excited during these measurements, but plays a significant role in operation. More research will go into
the characterization of these frequencies, which is associated with an extensive analysis of the mode
shapes to confirm the current results and classify the new findings. Mastering the harmonic influence
is still the biggest challenge, for this reason, more techniques for the harmonic detection will be stud-
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ied in the future. Hence, input independent techniques such as the transmissibility based OMA shall
be investigated. Currently, an approach to use the energy spectrum for the identification of structural
modes is investigated. The identified structural behavior of the axial compressor, as well as the different
techniques used in operation can be represented in a digital model. Hence, future changes or critical
conditions can be monitored running new analyses with the tools presented. These updated results can
be compared to the verified modal parameters to identify structural changes.
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ABSTRACT 

Dynamic substructuring is an efficient tool in the analysis of large structures and is represented by 

coupling and decoupling techniques. This paper presents the decoupling of a bearing support structure 

from a rotating machine foundation with four decoupling methods based on a dual approach and the 

assembling of the complete foundation by dynamic coupling. The decoupled responses obtained by 

each method are analyzed as well as the influence of the number of excitation nodes. Frequency 

response functions are synthesized using modal parameters determined by experimental modal analysis 

and the least squares method for complex exponentials. An analytical system is also used for a 

preliminary substructuring analysis. The decoupling methods, named Standard, Extended Interface, 

Overdetermined and Internal, differ on the definition of the interface conditions and can present distinct 

behaviors depending on the experimental data. The study demonstrates that if the dynamic response of 

the bearing component is decoupled, it can be coupled to the foundation in any other number or 

positions in numerical simulations without the necessity to physically modify the test rig. 

Keywords: Substructuring, Rotating Machines, Experimental Modal Analysis, Foundations 

1. INTRODUCTION 

Substructure decoupling techniques constitute a fundamental branch of dynamic substructuring (DS), 

which is a methodology initially proposed in 1963 for the static analysis of complex structures [1] by 

their subdivision in several components. Nevertheless, the lack of efficient methods back then when 

dealing with these dynamic systems demanded new paths to overcome the existing limitations of 

computers. Among the first and most well-known methods developed, one could refer to the frequency-

based substructuring, formulated by [2] in 1988 and known for using frequency response functions 

(FRFs) to perform the necessary analyses [3]. Although the basic theoretical background of DS in the 
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frequency domain was established at the end of the 20th century, new challenges arise everyday as 

experimental results become more relevant to understand complex systems. In the following years, two 

new concepts were proposed to reduce computational costs, namely the primal and dual approaches [3], 

which are responsible for satisfying interface conditions a priori and reducing the total amount of 

variables to be determined. The primal formulation defines a unique set of displacement degrees of 

freedom (DOF) for the interfaces, which satisfies the compatibility condition. On the other hand, the 

dual approach, presented by [4], satisfies the equilibrium condition by defining a unique set of interface 

forces whose amplitudes are commonly written as Lagrange multipliers, as shown in [5].  

The main applications of dynamic substructuring are the coupling and decoupling of substructures, 

techniques that have been used to study several different structures [6,7,8]. When the dynamic behavior 

of every component in a global system is individually known, the total response due to their interaction 

when assembled can be determined by coupling. Alternatively, if one needs to extract the dynamic 

characteristics of a substructure that cannot be separately measured, decoupling techniques are able to 

numerically isolate that component [9]. In complex systems such as rotating machinery and their 

supporting structures, component-mode synthesis and substructuring techniques have been discussed 

[10,11]. Nonetheless, they still demand more investigation. These supporting structures, also named 

foundations, besides providing mechanical support for the machine, interact dynamically with the rotor 

and that interaction must be taken into account in the analysis of the complete system [12]. Therefore, 

dynamic characterization of each component of the foundation is necessary if one aims to scrutinize the 

measurement responses of the rotating machine and observe the exact influence of the foundation 

substructures.  

In this paper, the applicability of dynamic substructuring in a rotating machinery foundation is 

investigated. The system considered in the analysis comprehends a metallic base and two bearing 

supports, also named pedestals. Experimental modal analysis (EMA) and synthesis of the frequency 

response functions of four different measurement configurations were performed. The dynamic 

decoupling of the bearing support was performed with four different decoupling methods, namely 

Standard, Extended Interface, Overdetermined and Internal. Finally, the decoupled pedestal is 

numerically coupled to the test rig and the results are compared to experimental data. 

2. SUBSTRUCTURING FORMULATION 

Each component of the foundation structure must respect two interface requirements in relation to its 

neighbouring substructures: the compatibility and equilibrium conditions [13]. These conditions assure 

that the corresponding interface DOF present the same displacements (compatibility) and forces 

(equilibrium) and that they have to be met regardless of the substructuring method. The compatibility 

condition can be expressed as in Eq. (1): 

𝑩𝒖 = 𝟎 (1)  

where 𝑩 is a signed Boolean matrix if the interface nodes are in matching order and 𝒖 is the global 

vector of displacements. This indicates that corresponding DOF pertaining to a same interface node 

have equal responses [13]. Secondly, the equilibrium condition is given by Eq. (2): 

𝑳𝑇𝒈 = 𝟎 (2)  

where 𝑳 is a Boolean localization matrix and 𝒈 is the vector of interface forces. This notation shows 

that for every pair of matching DOF, the connection forces have equal magnitudes and opposite 

directions and thus they sum to zero when assembled [14]. A useful relation is obtained when observing 

that 𝑳 and 𝑩 represent each other’s null spaces. 

By associating the interface conditions with the dynamic behavior of the structure written in the 

frequency domain, the resulting system of equations is presented in Eq. (3): 
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{

𝒁𝒖 = 𝒇 + 𝒈
𝑩𝒖 = 𝟎
𝑳𝑻𝒈 = 𝟎

} (3)  

In Eq. (3), 𝒁 is the mechanical impedance block matrix of the foundation components and 𝒇 is the vector 

of external forces acting on the entire system. The frequency dependency is omitted for brevity. 

Subsequently, the dual formulation is achieved by choosing coupling forces as Eq. (4): 

𝒈 = −𝑩𝑇𝝀 (4)  

where 𝝀 are Lagrange multipliers that correspond to the intensities of the coupling forces. The minus 

sign is used to obtain a symmetric system later. By substituting the interface forces in Eq. (3), one finds 

Eq. (5):  

[𝒁 𝑩𝑇

𝑩 𝟎
] {

𝒖
𝝀

} = {
𝒇
𝟎

} (5)  

Since experimental measurements of the foudation result in FRFs, which are used to sythesize 

receptance matrices, it is common to rewrite Eq. (5) using 𝒀 = 𝒁−1, where 𝒀 is a receptance matrix, 

and solving it for the Lagrange multipliers first. Then, Eq. (6) can be written and therefore is called the 

dual interface problem in the frequency domain, suitable for substructuring with experimental data. The 

simplified notation with �̃� is commonly used. 

𝒖 = 𝒀𝒇 − 𝒀𝑩𝑇(𝑩𝒀𝑩𝑇)−1𝑩𝒀𝒇 = (𝑰 − 𝒀𝑩𝑇(𝑩𝒀𝑩𝑇)−1𝑩)𝒀𝒇 = �̃�𝒇 (6)  

Assuming the dynamic behavior of 𝑛𝑠 coupled substructures of the foundation must be determined, Eq. 

(6) can be used after writing an appropriate Boolean matrix 𝑩 acting on all interface DOF. Since the 

dual formulation maintains all DOF of the 𝑛𝑠 substructures, the coupled receptance matrix �̃� will have 

repeated rows and columns, which can be removed by using Eq. (7): 

�̂� = (𝑳)+�̃�(𝑳𝑇)+ (7)  

where (𝑳)+ is the pseudoinverse of 𝑳. 

The inverse operation, i.e., dynamic decoupling, is easier to formulate if we consider two subsystems 

A and B and the assembled system AB. Subsystem B would be the bearing pedestal while subsystem 

A represents the metallic base. 

We start by writing the equations of motion for the assembled system AB and the subsystem A in terms 

of their impedance matrices as Eq. (8): 

𝒁𝐴𝐵𝒖𝐴𝐵  = 𝒇𝐴𝐵 + 𝒈𝐴𝐵

𝒁𝐴𝒖𝐴 = 𝒇𝐴 − 𝒈𝐴  (8)  

After substituting the interface forces for the Lagrange multipliers and associating the interface 

conditions, the equations are arranged in a matrix form, as shown in Eq. (9): 

[
𝒁𝐴𝐵 𝟎 𝑩𝐴𝐵𝑇

𝟎 −𝒁𝐴 𝑩𝐴𝑇

𝑩𝐴𝐵 𝑩𝐴 𝟎

] {
𝒖𝐴𝐵

𝒖𝐴

𝝀

} = {
𝒇𝐴𝐵

𝒇𝐴

𝟎

} (9)  

The similarity with Eq. (5) indicates that decoupling means determining interface forces that act in 

opposite direction on system AB, removing the influence of A on AB, leaving just the uncoupled 

response of B [14]. After solving the system for 𝒖𝐴𝐵 while considering 𝒇𝐴 = 0, the final expression is 

shown in Eq. (10), where the expression multiplying 𝒇𝐴𝐵 is the receptance matrix of the decoupled 

system. 
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𝒖𝐴𝐵 = (𝒀𝐴𝐵 − 𝒀𝐴𝐵𝑩𝐴𝐵𝑇
(𝑩𝐴𝐵𝒀𝐴𝐵𝑩𝐴𝐵𝑇

− 𝑩𝐴𝒀𝐴𝑩𝐴𝑇
)

−1
𝑩𝐴𝐵𝒀𝐴𝐵) 𝒇𝐴𝐵 (10)  

Different solutions can be achieved for this expression and each one corresponds to a specific choice 

regarding the interface conditions. Four important decoupling methods can be derived: Standard, 

Extended Interface, Overdetermined and Internal. All of them require strong compatibility when 

combined with the interface conditions of Eq. (1) and Eq. (2) and will be addressed in the next section. 

2.1. Decoupling methods 

When both interface conditions are defined within the same set of DOF, the decoupling methods are 

said to be collocated. On the other hand, when they are written for different sets of DOF, the methods 

are non-collocated. Hence, it is useful to separate matrix 𝑩 in matrix 𝑪 for compatibility and matrix 𝑬 

for equilibrium [5]. 

The first collocated method is obtained by choosing only the interface DOF (or nodes) for both 

conditions, situation in which the connection forces are determined using the minimum information 

needed. This method is referred to as Standard and the Boolean matrices are expressed as: 

𝑪𝐴 = 𝑬𝐴 = [𝟎𝑐𝑎 − 𝑰𝑐𝑐], 𝑪𝐴𝐵 = 𝑬𝐴𝐵 = [𝟎𝑐𝑎 𝑰𝑐𝑐  𝟎𝑐𝑏] (11)  

where 𝑎, 𝑏 and 𝑐 are the number of nodes internal to subsystem A, internal to subsystem B and from 

the interface, respectively. This notation implies that interface DOF are numbered in the same way in 

A and AB. The standard method may sometimes fail if measurement errors are too significant. In those 

situations, a second collocated method can be chosen by defining 𝑪𝐴 and 𝑪𝐴𝐵 as in Eq. (12). 

𝑪𝐴 = 𝑬𝐴 = [
−𝑰𝑎𝑎 𝟎

𝟎 −𝑰𝑐𝑐
] , 𝑪𝐴𝐵 = 𝑬𝐴𝐵 = [

𝑰𝑎𝑎 𝟎 𝟎
𝟎 𝑰𝑐𝑐 𝟎

] (12)  

This is known as the Extended Interface method since 𝑎 additional internal nodes from subsystem A 

are also considered. This extra information aims to minimize measurement errors since these points 

also respond to the connection forces between the substructures. Frequently, this method results in a 

bad conditioned matrix inversion if measurement errors are negligible. In that case, the Lagrange 

multipliers become redundant due to repeated terms in the receptance matrices [5]. In this paper, we try 

to circumvent this problem by using the Moore-Penrose pseudoinverse. 

The first non-collocated method, named Overdetermined, uses only interface nodes for the equilibrium 

condition but both interface and internal nodes of A for compatibility. Hence, it results in 𝑎 + 𝑐 

compatibility conditions and only 𝑐 Lagrange multipliers to be estimated in a least-squares sense. The 

corresponding Boolean matrices are written as: 

𝑪𝐴 = [
−𝑰𝑎𝑎 𝟎

𝟎 −𝑰𝑐𝑐
] , 𝑪𝐴𝐵 = [

𝑰𝑎𝑎 𝟎 𝟎
𝟎 𝑰𝑐𝑐 𝟎

] , 𝑬𝐴 = [𝟎𝑐𝑎 − 𝑰𝑐𝑐], 𝑬𝐴𝐵 = [𝟎𝑐𝑎 𝑰𝑐𝑐  𝟎𝑐𝑏]  (13)  

The second non-collocated method is called Internal and it uses interface DOF for compatibility and 

internal DOF of A for equilibrium. Great practical advantage is achieved since inversion of interface 

receptance matrices is avoided. Eq. (14) presents the Boolean matrices of the Internal method. 

𝑪𝐴 = [𝟎𝑐𝑎  − 𝑰𝑐𝑐], 𝑪𝐴𝐵 = [𝟎𝑐𝑎  𝑰𝑐𝑐  𝟎𝑐𝑏], 𝑬𝐴 = [−𝑰𝑎𝑎  𝟎𝑎𝑐], 𝑬𝐴𝐵 = [𝑰𝑎𝑎  𝟎𝑎𝑐  𝟎𝑎𝑏] (14)  

Each method and its respective performance depends on the system characteristics. It is necessary to 

investigate whether a specific approach best suits an experimental setup and results in a well-

represented decoupled substructure. 
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3. THEORETICAL AND EXPERIMENTAL SYSTEMS DESCRIPTION 

3.1. Analytical system – a preliminary analysis 

The preliminary analysis of the decoupling methods considers the mechanical system shown in Figure 

1, which consists of three independent subsystems, A, B and C.  

 

Figure 1. Analytical mechanical system. 

 

Their respective displacement variables are indicated as 𝑢𝐴, 𝑢𝐵 and 𝑢𝐶. Mass and stiffness coefficients 

are presented in Table 1 and the damping is proportional to the stiffness matrix with a factor of 2 ∙ 10−4. 

Frequency response functions were obtained from 0 to 50 Hz and white noise with amplitude of 1% the 

RMS value of the FRFs was added to the responses used in the substructuring processes to resemble 

real-life measurement situations. First, subsystem C was ignored. Hence, there is only system AB, from 

which B was decoupled with all four decoupling methods. Next, this decoupled subsystem B was 

duplicated and named subsystem C, explaining why their physical parameters in Table 1 are identical. 

Finally, subsystems A, B and C were all coupled and the responses were compared to the exact ones. 

 

Table 1. Mass and stiffness coefficients of the analytical mechanical system. 

Subsystem A Subsystems B and C 

Mass [kg] Stiffness [kN/m] Mass [kg] Stiffness [kN/m] 

𝑚𝐴1
 6 𝑘𝐴1

 3 𝑚𝐵1
 5 𝑘𝐵1

 1.5 

𝑚𝐴2
 2 𝑘𝐴2

 2 𝑚𝐵2
 2 𝑘𝑅 2 

𝑚𝐴3
 2 𝑘𝐴3

 3 𝑚𝐶1
 5 𝑘𝐶1

 1.5 

𝑚𝐴4
 5 𝑘𝐴4

 1.5 𝑚𝐶2
  2 𝑘𝐿 0.8 

𝑚𝐴5
 1.5 𝑘𝐴5

 0.7    

𝑚𝐴6
 1.5 𝑘𝐴6

 0.2  

𝑚𝐴7
 3 𝑘𝐴7

 2  

 

3.2. Rotating machinery foundation – experimental analysis 

The rotating machinery foundation, shown in Figure 2, consists of a rectangular metal base (1) and two 

bearing support structures (2) attached to an inertial structure (3). The metallic base is made of steel and 

it is connected to the inertial block by four fixing columns placed each in one of the four edges. The 

first bearing pedestal is near the electric motor and it is located at 75 mm from the left extremity of the 

base whilst the second distances 400 mm from the first. Measurements were performed on the 

foundation [15] considering four different configurations: 

i) Configuration 1: metallic base without pedestals in free-free condition; 

ii) Configuration 2: metallic base (free-free) with one pedestal coupled; 

iii) Configuration 3: metallic base fixed to the inertial block without pedestals; 

iv) Configuration 4: metallic base fixed to the inertial block with two pedestals, as in Figure 2. 
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Figure 2. Rotating machinery test rig. 

 

Seven accelerometers were used to acquire vibration data. A signal conditioner, an acquisition board 

and an impact hammer are also part of the measurement equipment. The frequency response functions 

range from 0 to 5 kHz (0.5 Hz step) and were obtained by St. Martin [15] with a sampling frequency of 

10 kHz. Configurations 1 and 2 were measured in order to decouple the bearing support while evaluating 

the four methods presented earlier. Configurations 3 and 4, on the other hand, were measured for two 

reasons: synthesis of the complete receptance matrices of configuration 3 is required to perform the 

dynamic coupling between the previously decoupled pedestal and the metallic base; secondly, 

experimental results of configuration 4 can then be used to compare and validate the substructuring 

processes of assembling the complete foundation. Figure 3 shows the measurement grid for the base 

and Figure 4 shows the measurement grids for the pedestal [15]. 

 
Figure 3. Measurement grid for the metallic base. 

 
Figure 4. Measurement grids for the pedestal. 

 

Measurement and excitation nodes for each configuration are exhibited in Table 1. The Least Squares 

Complex Exponential (LSCE) algorithm [16] is used to identify modal parameters from 5 to 250 Hz. 

This frequency range removes rigid body components and includes higher frequency modes. 

Furthermore, FRF reconstitution [17] is also applied to synthesize complete receptance matrices and 

the Modal Assurance Criterion (MAC) is used to compute mode similarity [18,19]. 
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Table 2. Measurement and excitation nodes of each foundation configuration. 

Configuration Measurement nodes Excitation nodes 

1 5, 13, 24, 35, 65, 75,80 1 to 63 

2 16, 94, 103, 113, 134, 147, 151 13 to 27, 50 to 54, 61 to 64, 84 to 165 

3 5, 13, 24, 35, 65, 75, 80 1 to 63 

4 12, 26, 72, 82, 85, 91, 94 1 to 64, 79 to 99 

 

To investigate the influence of the number of excitation nodes upon the quality of the decoupled 

responses of the pedestal, three sets of nodes were defined, as presented in Table 3. Regarding the 

measurement data and driving points locations, a previous analysis showed that nodes 13 and 147 - of 

configurations 1 and 2, respectively - are good options since their responses adequately represent all 

the modes within the frequency range of interest. The pedestal nodes, 64 to 165, are only considered in 

the EMA of configuration 2. 

 

Table 3. Sets of nodes used for the EMA of the first two configurations of the foundation. 

Set Measurement nodes Excitation nodes 

1 13 and 147 
13, 20, 24, 51, 52, 54, 61, 62, 63, 92, 94, 98, 

111, 112, 128, 134, 147, 149, 150, 151 

2 13 and 147 13, 20, 52, 62, 94, 112, 147, 149 

3 13 and 147 13, 19, 94, 98, 111, 112, 147, 149, 151 

4. RESULTS 

4.1. Analytical system 

Two components of the decoupled subsystem B are shown in Figure 5 for the four decoupling methods. 

The FRF diagrams are truncated at 12 Hz for the sake of visualization.  

 

Figure 5. Decoupled responses of subsystem B with all four decoupling methods. 
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As one can see, the four decoupling methods perform with consistent results. The Gaussian noise added 

to the FRFs causes some disturbances on the decoupled subsystem B, more apparent with the Extended 

Interface method and around the resonances and at higher frequencies for the others. Nevertheless, the 

noise addition and the use of the pseudoinverse operation seem to avoid the singularities issue often 

observed with Extended Interface. 

The decoupled responses of B were then duplicated, originating subsystem C. After coupling all three 

substructures, Figure 6 presents some of its FRF components for all four cases. The Overdetermined 

method seems to handle the noise influence better, which can be concluded by determining the relative 

errors between original and coupled/decoupled responses. Since the Lagrange multipliers are 

determined by a least-squares approach, they tend to estimate interface forces more adequately in the 

presence of noise.  

 
Figure 6. Coupled responses of the analytical substructures. 

 

It is noted that, even though the noise certainly influences the coupling procedure, the system ABC can 

be similar to the original. In fact, modal parameters of the coupled system show that the dynamic data 

is actually retained. Considering the analogous behaviors observed with the four methods, a more 

thorough analysis is carried out with the experimental data of the rotating machinery foundation. 

4.2. Experimental foundation 

Since the metal base and the pedestal’s measurement grids are defined separately, their interface points 

were approximated. Therefore, the interface region was delimited as shown in Figure 7 to best represent 

the actual physical coupling. In other words, nodes contained within the interface region are the ones 

that, possibly, best describe the coupling points between the two substructures. 

 
Figure 7. Interface region. 

98



 

 

Stabilization diagrams of the first set of nodes from Table 3 were analyzed in order to select the best 

approximation order of the LSCE algorithm. It was possible to filter out spurious frequencies and 

manually select the stable ones corresponding to physical modes. Five modes were found for 

configuration 1 and ten for configuration 2. The corresponding natural frequencies are therefore used 

to guide the LSCE algorithm to seek for stable points near those values. Subsequently, the modal 

parameters were identified for configurations 1 and 2 with the three sets of nodes. Experimental modal 

analysis details were previously explored thoroughly since the main focus is to observe the variations 

on the decoupled responses in relation to the three sets of nodes. Table 4 presents the natural frequencies 

and damping coefficients obtained for configurations 1 and 2 with measurements from nodes 13 and 

147, respectively. Mode shapes are omitted but are also computed. With the estimated modal 

parameters, the remaining lines of the receptance matrices could be satisfactorily synthesized. 

 

Table 4. Natural frequencies and damping coefficients of configurations 1 and 2. 

Configuration 1 (base free-free) Configuration 2 (base and pedestal free-free) 

Natural frequencies [Hz] Damping coefficients Natural frequencies [Hz] Damping coefficients 

43,47 0,0093 39,92 0,0099 

99,58 0,0069 59,32 0,0096 

121,77 0,0036 98,06 0,0092 

209,53 0,0025 113,95 0,0044 

238,64 0,0024 131,06 0,0195 

  150,63 0,0064 

  170,81 0,0072 

  185,19 0,0171 

  217,10 0,0040 

  226,66 0,0048 

 

After writing the appropriate interface condition matrices, the solution of Eq. (10) with all four 

decoupling methods and all three sets of nodes was accomplished. The modal data of the decoupled 

pedestal responses is determined with the LSCE algorithm. Results show that the first set of nodes 

seems to contain more than necessary information and ends up disturbing the decoupled responses with 

excessive data and noise. Consequently, natural frequencies, damping coefficients and mode shapes of 

the bearings support vary notably regardless of the decoupling method applied. Moreover, some base 

modes are still present in the pedestal FRFs, which suggests that the interface nodes of set 1 are not 

good approximations of the real coupling points. The second set reduces base nodes to one and 

maintains the same three interface nodes. Again, frequencies that belong to the base appear in the 

pedestal FRFs. In addition, only four pedestal internal nodes are decoupled, which may poorly represent 

the support’s mode shapes due to the lower number of physical points considered. Finally, the third set 

leads to better performances of all four decoupling methods, meaning that node 19 is, very likely, the 

best approximation to an interface point. Nevertheless, considerable differences are observed among 

the four decoupling methods. Table 5 displays nine natural frequencies found within 5 to 250 Hz for 

the pedestal. These frequencies represent the medium values obtained with thirty-two samples, i.e., for 

each decoupling method there are eight samples corresponding to a different driving point of the (set 3) 

decoupled pedestal. 

A thorough analysis of all the thirty-two samples revealed a weak influence of the driving point on the 

estimation of the modal parameters. 
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Table 5. Natural frequencies estimated for the bearing support structure. 

Natural frequencies [Hz] 

1st  39,87 4th  118,95 7th  173,03 

2nd  57,47 5th  130,80 8th  208,87 

3rd 100,01 6th  151,01 9th  225,57 

 

The best results were obtained with the Overdetermined and Standard decoupling methods. Their 

responses contain less spurious modes, more consistency and precision. On the other hand, the Extended 

Interface and Internal methods generate decoupled responses that contain approximately less than half 

of the natural frequencies shown in Table 4 and several spurious and repeated frequencies. The 

Extended Interface method may require a weak formulation of the interface conditions, as already 

discussed by [5], since the coupling region is an approximation. For a similar reason, the 

Overdetermined method delivers good results because there is an intrinsic weakening of the interface 

conditions since the Lagrange multipliers are determined by least-squares. 

An indirect evaluation of the four methods was attempted by coupling back the decoupled pedestal to 

node 19 of the base in free-free condition (configuration 1), so as to compare the mode shapes of this 

coupled system to those experimentally obtained from configuration 2. This comparison uses the MAC 

matrices, shown in Figure 8. All nodes of set 3 are used. 

 
Figure 8. Comparison of the four decoupling methods by their influence in a simple coupling. 

 

It is clear that the Standard and Overdetermined methods return a decoupled subsystem that actually 

represents the bearing support since the numerically coupled structure resembles its original equivalent. 

The MAC values show great similarity between experimental and the so-called coupled mode shapes 

for both methods. On the contrary, assembling the system with pedestals obtained with Extended 

Interface and Internal do not result in similar mode shapes. Nevertheless, since the main goal is to 

couple two pedestals to the inertial foundation and obtain the complete structure, some differences may 

still be perceived. For this last step, only the Overdetermined and Standard methods were considered. 

Hence, the decoupled pedestal was coupled to the foundation in configuration 3, whose FRFs were 

synthesized with internal nodes 9 and 13 and interface nodes 4 and 19. Figure 9 shows the positions 

where the pedestals are coupled and the corresponding coupling nodes. 

 
Figure 9. Coupling of two pedestals: nodes and positions. 
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Finally, Table 6 compares experimental and coupling-obtained modal parameters for the foundation.  

 

Table 6. Comparison of experimental and coupling-obtained modal parameters. 

Natural Frequencies [Hz] 

Relative Error 

Experimental Coupling 

37,03 39,80 7,48% 

58,71 59,22 0,88% 

80,05 75,39 5,82% 

95,16 93,47 1,77% 

123,64 119,25 3,55% 

132,67 132,57 0,07% 

169,61 169,94 0,19% 

186,33 183,92 1,29% 

219,51 217,2 1,05% 

241,06 242,57 0,62% 

 

The relative errors are indicators that the natural frequencies of the foundation assembled by dynamic 

coupling are, in fact, equivalent to the frequencies experimentally determined. The same conclusion is 

obtained when damping factors are compared, showing that the substructuring model of the foundation 

is appropriate and therefore can be used to substitute the real structure in order to simulate the rotating 

machine response. Moreover, it becomes clear that the bearing pedestals can be coupled to other regions 

since their dynamic characteristics are known and therefore can be easily manipulated. 

5. CONCLUSIONS 

Both experimental coupling and decoupling techniques were presented in this paper for a rotating 

machine foundation. Four decoupling methods were analyzed and compared in the process of extracting 

a bearing support structure from a coupled subsystem of the foundation. The Overdetermined method, 

which computes interface loads in a least-squares sense, performed better and resulted in a bearing 

pedestal that represents the actual substructure. The subsequent coupling of this pedestal to the rest of 

the rotor foundation showed that the complete structure can be numerically assembled since all modal 

parameters resemble the experimental ones. Applications from this study comprise the possibility of 

simulating systems in different configurations whilst still using experimental data, optimization of 

structures and damage detection through modal parameters identification. 

ACKNOWLEDGEMENTS 

The authors acknowledge the funding received from CNPq – Conselho Nacional de Desenvolvimento 

Científico e Tecnológico, grants number 131848/2020-8 and 307941/2019-1. 

 

 

 

101



REFERENCES 
 

[1] Przemieniecki, J.S. (1963). Matrix structural analysis of substructures. AIAA Journal, 1(1), 138-

147. 

[2] Jetmundsen, B., Bielawa, R.L., & Flannelly, W.G. (1988). Generalized Frequency Domain 

Substructure Synthesis. Journal of the American Helicopter Society, 33(1), 55-64. 

[3] Voormeeren, S.N. (2012). Dynamic substructuring methodologies for integrated dynamic analysis 

of wind turbines. PhD Thesis. Delft University of Technology, Delft. 

[4] Rixen, D.J. (2004). A dual Craig–Bampton method for dynamic substructuring. Journal of 

Computation and Applied Mathematics, 168(1-2), 383-391. 

[5] Voormeeren, S.N., & Rixen, D.J. (2012). A family of substructure decoupling techniques based on 

a dual assembly approach. Mechanical Systems and Signal Processing, 27, 379-396. 

[6] Peeters, P., Tamarozzi, T., Vanhollebeke, F., & Desmet, W. (2014). A robust approach for 

substructure decoupling. In: Proc. Int. Conf. on Noise and Vibration. Eng. ISMA (pp. 3907-3921). 

Leuven, KU. 

[7] D’Ambrogio, W., & Fregolent, A. (2009). Decoupling Procedures in the General Framework of 

Frequency Based Substructuring. In: Proc. Int. Modal Analysis Conference XXVIII. Jacksonville, 

Society of Experimental Mechanics. 

[8] Sjövall, P., & Abrahamsson, T. (2008). Substructure system identification from coupled system 

test data. Mechanical Systems and Signal Processing, 22(1), 15-33. 

[9] Voormeeren, S.N., & Rixen, D.J. (2011). A Dual Approach to Substructure Decoupling 

Techniques. In: Proc. Int. Modal Analysis Conference XXVIII (pp. 601-616). Jacksonville, Society 

of Experimental Mechanics.  

[10] Seshu, P. (1997). Substructuring and Component Mode Synthesis. Shock and Vibrations, 4(3), 

199-210. 

[11] Glasgow, D.A., & Nelson, H.D. (1980). Stability Analysis or Rotor-Bearings Systems Using 

Component Mode Synthesis. ASME Journal of Mechanical Design, 102, 352-359. 

[12] Cavalca, K. L., Cavalcante, P. F., & Okabe, E.P. (2005). An investigation on the influence of the 

supporting structure on the dynamics of the rotor system. Mechanical Systems and Signal 

Processing, 19(1), 157-174. 

[13] Allen, M.S., Rixen, D.J., Van der Seijs, M., Tiso, P., Abrahamsson, T., & Mayes, R.L. (2020). 

Substructuring in Engineering Dynamics: Emerging Numerical and Experimental Techniques, 

594, Cham: Springer International Publishing. 

[14] Van der Seijs, M.V. (2016). Experimental dynamic substructuring: Analysis and design strategies 

for vehicle development. PhD Thesis. Delft University of Technology, Delft. 

[15] St. Martin, L.B. (2020). Interaction between rotor and flexible foundation subject to structural 

variations. PhD Thesis. School of Mechanical Engineering, University of Campinas, Campinas. 

[16] He, J., & Fu, Z.-F. (2001). Modal Analysis. Oxford, Butterworth-Heinemann. 

[17] Ewins, D.J. (2000). Modal testing: theory, practice, and application, 2ed. Baldock, Research 

Studies Press. 

[18] Pastor, M., Binda, M., & Harčarik, T. (2012). Modal Assurance Criterion. Procedia Engineering, 

48, 543-548. 

[19] Allemang, R.J. (2003). The Modal Assurance Criterion – Twenty Years of Use and Abuse. Journal 

of Sound and Vibration, 37(8), 14-23. 

 

102



 

 

 

 

 

 

 

 

D A M A G E  D E T E C T I O N  U N D E R  C H A N G I N G  O P E R A T I N G  

C O N D I T I O N  

 

103



 

MONITORING INTERNAL STRAINS IN MARSHALL 
SPECIMEN UNDER DYNAMIC LOADS USING 
RAYLEIGH SCATTERING-BASED DISTRIBUTED 
FIBER SENSORS 

Andreas Roth1, Mathias Leopold2, Thomas Schmidt3, Sascha Kayser4 

1 M. Sc., Magdeburg-Stendal University of Applied Sciences, andreas.roth@h2.de. 
2 Dipl. -Ing., Magdeburg-Stendal University of Applied Sciences, mathias.leopold@h2.de. 
3 Prof. Dr.-Ing., Magdeburg-Stendal University of Applied Sciences, thomas.schmidt@h2.de. 
4 Prof. Dr.-Ing., Magdeburg-Stendal University of Applied Sciences, sascha.kayser@h2.de. 

ABSTRACT 

The aim of the investigations is to establish a non-destructive testing method for the condition of asphalt 
roads. For this purpose, a sensor system is inserted into the asphalt layers during construction. In the 
recent developments Rayleigh scattering-based distributed optical-fiber sensors (DOFS) have been used 
increasingly for measurements at barely accessible locations, for which the base layer of a road is an 
example. This paper explores the feasibility of embedded distributed optical-fiber sensors in asphalt 
roads to record the fatigue behavior. Comparative measurements are carried out to confirm the validity 
of the measurement results. Dynamic loads (cyclic indirect tensile test) have already been used to 
determine the fatigue behavior of asphalt. The DOFS allows to measure with a high spatial resolution, 
where the conventional method only acquires one value per time step. The horizontal strain function of 
the asphalt specimen in dependence of time and space in the CITT can be perfectly matched to a 
Gausian-sinusoidal-3D-fit, which subsequently can be applied to Young’s-modulus calculations. 
Obvious deviations from the fit could be used for crack detection in asphalt structures. Furthermore, it 
is discussed how the lab-scale results can be used for the implementation of DOFS in asphalt roads. 

Keywords: Rayleigh Scattering, Distributed Optical-Fiber Sensors (DOFS), Non-Destructive Testing, 
Asphalt, Strain Measurements, Dynamic Loads 

1. INTRODUCTION 

An asphalt road construction usually consists of a base layer and surface. While the asphalt base layer 
represents the foundation of the pavement, the surface is considered a wearing course. Thus, the 
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requirements for the service life of different construction layers varies significantly (asphalt surface 10 
- 20 years; asphalt base course 30 - 40 years), and failure to achieve these leads to economic losses.  

The structural condition of asphalt pavement as well as its change over time have been measured for 
some time [1]. This information is then evaluated and used for planning maintenance measures.  
Maintenance measures serve to preserve the substance and utility value of traffic pavements, including 
the ancillary surfaces, as well as the environmental compatibility. This includes measures of operational 
as well as structural maintenance, which are usually carried out within the property serving.  

Considering ecological and economic sustainability, maintenance measures need to achieve their 
intended service life. This applies most strongly for extensive measures, e.g., complete renewal of the 
asphalt surface layer. For that purpose, the asphalt base layer must be in a structural condition that 
results in a service life longer than the targeted service life of the maintenance measure carried out. It 
is therefore imperative that the structural condition of the asphalt base layer is known at the time of 
maintenance planning.  

The assessment of the structural condition of asphalt base courses is of particular importance. Currently, 
there are only destructive methods available [2]. The basis of the corresponding guidelines for 
evaluating the condition of the asphalt base course is extensive material examinations, which can only 
be carried out by drilling core samples from the existing pavement. The data from the material 
examinations is then used within a computational model, deriving information about the remaining 
service life and thus structural substance. 

An area-wide and/or continuous evaluation of the structural substance can barely be realized with the 
described methods due to high effort and additional damage, making this workflow not economically 
feasible. In addition to the high costs for the laboratory tests and the evaluation of the results, there are 
also high economic costs as a result of the necessary traffic restrictions during the sampling.  

For the derivation of simulation models (FE models with realistic material laws), a better understanding 
of the time/load-dependent development of damage in the base courses is needed. Due to the rapid 
development of new measurement techniques (fiber optical methods), a comprehensive and continuous 
evaluation of the structural substance becomes possible. 

2. MATERIALS AND METHODS 

2.1. Measuring temperature and strain using OFDR 

 

Figure 1. Effect of strain and temperature on Rayleigh backscatter for a particular frequency window [3]. 

Fiber optic sensors are commonly used for temperature measurements and the acquisition of mechanical 
properties. These systems consist of the connected passive fiber and a readout unit, with the latter 
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emitting light from a tunable laser or broadband source into the fiber. In the fiber the properties are 
modified by the state of its temperature and strain. These modifications are detected by the readout unit 
and remapped in strain or temperature differences [4]. The measurement rate depends on sensor length, 
measurement mode, gage pitch, performance mode, and number of channels (Table 1). If there are 
multiple fibers the measurement rate is divided by the number of channels. 

Table 1. Measurement rates of a Luna Odisi 6100 for a single channel [5]. 

Mode 
Gage pitch  

0.65 mm 1.3 mm 2.6 mm 5.2 mm 

2.5 m  62.5 Hz 125 Hz 250 Hz 250 Hz 

5 m  40Hz 80 Hz 160 Hz 160 Hz 

10 m 25 Hz 50 Hz 100 Hz 100 Hz 

20 m  12.5 Hz 25 Hz 50 Hz 50 Hz 

50 m  - 10 Hz 20 Hz 20 Hz 

100m  - - 10 Hz 10 Hz 

2.2. Preparing the data 

Under certain circumstances, the measuring device may output no values or values with errors. For this 
reason, a filter was applied that first removes non-matching values and interpolates missing values 
through neighboring measurement points. The filter uses a sliding window and removes values that 
differ to far from the median. Often there is a lot of NaN (not a number) values at the end of the fiber. 
Under laboratory conditions the sample is not so close to the end, hence these values have no impact. 
In the case of fibers that are installed in the road, such values must not be included in the evaluation. 
Values that are missing or incorrect are then linearly interpolated.  

2.3. Embedding sensor cables in Marshall specimen 

For the determination of strains in asphalt using fiber optic cables, it is necessary to clarify which fibers 
are suitable. Due to the high mechanical stresses in the compaction process, it is required to use 
protected fiber structures. Simple glass fibers as in Figure 2a are unsuitable due to the shear forces that 
occur during application. Various alternative designs are available on the market for use in highly 
stressed environments (Figure 2b and Figure 2c), where the glass fiber is surrounded by a protective 
metal capillary and, in Figure 2c, additionally by a profiled plastic cladding. The different variants were 
tested to validate their mechanical suitability. It was shown that both the metal-coated and the metal- 
and plastic-coated glass fiber were functional after compaction of the asphalt. The main difference was, 
that in the case of the simple smooth metal capillary, it was not possible to establish a sufficient bond 
with the surrounding asphalt. Thus, there was only a limited transfer of strain to the fiber. In comparison, 
the glass fiber additionally equipped with a profiled plastic coating, a form-fit connection with the 
asphalt was observed, resulting in a transmission of the strain. Therefore, the glass fiber cable shown in 
Figure 2c was used for all further investigations (Solifos BRUsens V9). 

a) 
 

b) 

 

c) 

Figure 2. Different measurement fibers. 

For the cyclic indirect tensile test (CITT), in accordance to [6], drilled test specimens made of rolled 
sector compacted samples or asphalt road pavements are commonly used. This possibility does not exist 
for integrated fiber optic cables, as they are destroyed by drilling and become unusable. An alternative 
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method of specimen fabrication had to be chosen for the integration of these variants. A modified 
Marshall specimen, in accordance to [7], was chosen, where the basic difference is the percussive 
compaction in contrast to the rolling compaction. It is necessary to build up the specimens in two layers 
in order to integrate the fiber optic cable in a process-safe manner. The lower part of the specimen is 
compacted and cooled, then the fiber optic cable is placed in the modified specimen mold and the upper 
asphalt layer is placed and compacted (Figure 3). Investigations confirmed that the modified 
manufacturing methodology has a negligible influence on the measurement results. Comparative 
measurements were carried out with classically produced specimens and further modifications, which 
validate permissible use. 

 

Figure 3. Lower half of the specimen with V9 cable (left) and full specimen with cable (right). 

2.4. The evaluation of damage in asphalt 

Miner’s rule is one of the most used cumulative damage equations for failures caused by fatigue and 
researches suggest that Miner’s rule can be applied for asphalt as a material [8]. Miner's hypothesis 
describes linear damage accumulation. Each load change consumes a small proportion of the total 
possible lifetime, not considering sequence and interaction effects. Undamaged materials have a 
damage 𝐷 = 0 and failure occurs when the D = 1. The accumulated damage can be written as the sum 
of the damages on different stress levels, where the damage of each stress level 𝐷  can be calculated 
with the respective number of loads on that stress level 𝑛  and the total number of loads 𝑁  that the 
material can survive (Eq. 1). 

𝐷 = 𝐷 =  
𝑛

𝑁
 (1)  

The cyclic indirect tensile test (CITT, in accordance to [7]) has been used to determine the fatigue 
behavior of asphalt.  

In the CITT, a sinusoidal compressive swell load is introduced into a cylindrical specimen via two load 
application bars diametrically opposite each other on the lateral surface. 

When the specimen is loaded, a vertically directed compressive stress is induced, which is variable 
along the vertical specimen axis. This results in a horizontally directed tensile stress, which is almost 
constant in the central area of the vertical specimen axis. In a fatigue test, the initial elastic strain and 
the fatigue load cycles are determined. From a test series consisting of several fatigue tests the material-
specific fatigue function can be determined. 
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Figure 4. Principle of the CITT [7]. 

The load used in the CITT is a continuous, force-controlled, harmonic sinusoidal threshold load without 
load pauses. Therefore, horizontal deformation in response to the load is described with Eq. 2: 

𝑢(𝑡) = 𝑎 + 𝑏 ⋅ 𝑠𝑖𝑛(2π ⋅ 𝑓  𝑡 + 𝑐) + 𝑑 ⋅ t (2)  

𝑢(𝑡) = total horizontal deformation in 𝑚𝑚 
𝑓 = frequency of the load function in 𝐻𝑧 
𝑡  = time in 𝑠 
𝑎 = absolute deformation in 𝑚𝑚    
𝑏 = sinusoidal amplitude of the deformation in 𝑚𝑚 
𝑐 = phase shift in 𝑟𝑎𝑑 
𝑑 = linear change of sine in 𝑚m/𝑠 
 

The absolute Young’s Modulus, |𝐸|, is calculated using the following formula: 

|𝐸| =
Δ𝐹

2 ⋅ 𝑏 ⋅ 𝐻

4

π
− 1 + 𝜈  (3)  

𝜈 is the Poisson's ratio, which depends on the temperature 𝑇, and is estimated using Eq. 4: 

𝜈 = 0.15 +
0.35

1 + 𝑒 . . ⋅
 (4)  

The load cycle number 𝑁  is defined at which macrocracks in the specimen can be observed during 
the fatigue test. Based on the concept of the dissipated energy ratio, ER is calculated as the product of 
the number of load cycles N and the stiffness modulus |𝐸|: 

𝐸𝑅 = |𝐸| ⋅ 𝑁 (5)  

𝑁  is now defined as the cycle where the energy ratio has its maximum. A polynomial fit of the 4th 
degree was applied in the vicinity of the maximum measured value to cancel out noise. The young 
modulus (thick red line) and the ER (thin red line) during a CITT can be seen in Figure 55. 
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Figure 5. Young’s modulus and ER during an CITT. 

Applying Miner’s rule damage at each point in the CITT can now be defined as: 

𝐷 =
𝑁

𝑁
 (6)  

The elastic horizontal strain 𝜀  generated by the force F at the specimen center is calculated according 
to the equation 7. The initial elastic strain 𝜀 ,  for each measurement is estimated from the cycles 98-
102.  

𝜀 =
2 ⋅ Δ𝑢

𝐷
⋅

1 + 3 ⋅ 𝜈

4 +  𝜋 ⋅ 𝜈 − 𝜋
 (7)  

3. RESULTS 

3.1. Description of the internal strains in Marshall specimens 

The internal strain has been monitored during the CITT. At the beginning of the CITT the internal strain 
can almost perfectly be fitted by a Gausian-sinusoidal-3D function, similar to Eq. 8: 

𝜀(𝑥, 𝑡) = 𝜀 +
𝜀

2
⋅ 𝑠𝑖𝑛(2π ⋅ 𝑓 ⋅ 𝑡 + 𝑐) + 𝛿 ⋅ 𝑡 𝑒𝑥 𝑝

−(𝑥 − 𝑥0)2

2 ⋅ σ2
  (8)  

ε(𝑥, 𝑡) = strain of the fiber in µ𝜀 
𝑓 = frequency of the load function in 𝐻𝑧 
𝑡  = time in 𝑠 
𝜀  = strain from plastic deformations and from base stress in µ𝜀 

 = amplitude eps in µ𝜀 

𝑐 = phase shift in 𝑟𝑎𝑑 
𝛿 = linear change of sine in µ𝜀/𝑠 
𝑥  = location along the fiber in 𝑚𝑚 
x   = expected value in 𝑚𝑚 
σ  = variance in 𝑚𝑚  
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The measured internal strains in the specimen in the beginning of the CITT for five load cycles (red) 
are shown in Fig. 5a, along with the fitted function (blue). More damaged specimens tend to derivate 
from the fit as seen in Fehler! Verweisquelle konnte nicht gefunden werden.b, suggesting the 
occurrence of cracks. A new variable, Δ𝜀, has been introduced to take this derivation into account and 
is defined by the maximum difference between the fit and the measured value of a timestep. As the fit 
is applied for five load cycles, Δ𝜀 is also averaged over the time. 

  

(a) (b) 

Figure 6. Internal strain and fitted function over 5 cycles in the CITT. (a) at the beginning (b) in the end 

3.2. Comparison of the results with conservative measurement methods 

Similar to the calculation in formula (Eq. 3.), the Young’s - modulus and the ER has been calculated 
during the CITT, where the following equation for the Young’s - modulus has been used (Eq. 9). 

|𝐸| =
Δ𝐹

2 ⋅ 𝜀𝑒𝑙 ⋅ 𝐻
(1 + 3 ⋅ 𝜈 ) (9)  

The curves of the Young's- moduli and energy ratios of the 3d fit (green) and the conservative 
measurement method (red, Fig. 6) are similar. However, the Young’s modulus of the new method is 
always slightly higher than the Young’s modulus of the conservative method, which was shown for all 
measurements. A reason for that could be the assumption that a plane stress state prevails in the slice, 
i.e. the stresses directed perpendicular to the slice disappear. Since the young modulus does not affect 
damage directly, the difference is neglected.  

 

Figure 7. Young Modulus and ER of the 3d fit and the conventional measurement method. 

110



3.3. Predicting the damage in lab scale 

To predict the damage a shallow neural network (one hidden layer with 75 neurons) has been trained. 
The features on which the network where trained were Δ𝜀, β, δ, x , σ  and 𝜀 , . 20 CITT’s with five 
different level of top stress have been carried out. The data of 15 tests has been used to train the network, 
while the remaining five have been used for testing. Data with a damage higher than 1.1 has been 
discarded. The actual calculated damage and the prediction of the neural network is shown in Fig. 9. To 
evaluate the performance of the network. The mean squared error (MSE Eq 10: 0.013) and the mean 
absolute error (MAE Eq 11: 0.09) have been calculated.  

𝑀𝑆𝐸 =  
1

𝑛
𝑌 − 𝑌  (10) 

𝑀𝐴𝐸 =  
1

𝑛
𝑌 − 𝑌  (11) 

Where n is the number of data points, 𝑌  is the value of the data point, in this case damage accoring to 
Eq. 6, and 𝑌  is the predicted damage. As seen in Fig. 8 the predicted damage seems to be quite accurate 
for most of the measurements, but there are some values where the prediction is way off. This might be 
solved with more training data.  

 

Figure 8. The predicted damage of the test data over the actual damage 
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ABSTRACT
In frequency domain experimental modal identification, the main goal is to extract the modal properties
from the measured transfer function or power spectral densities. The modal parameter estimation can
be carried out in a Linear Least Squares (LLS) sense by means of parametric identification methods.
When the accuracy of such estimates is not accurate enough, non-linear identification methods based on
Maximum Likelihood (ML) can by employed to improve precision of the LLS estimates in an iterative
manner. One the main advantages of the ML-based optimization techniques is that, apart from providing
more accurate estimates, they are also capable of estimating the uncertainties on the optimized estimates
if the noise information is also taken in account in the optimization process. In this paper, the perfor-
mance of a new frequency-domain ML-based technique formulated in Z-domain modal is investigated
by means of a simulated example.

Keywords: Maximum Likelihood, Non-Linear Least Squares, Modal Identification, Modal Parameter
Estimation, Frequency Domain, Modal Analysis, Identification Technique

1. INTRODUCTION

When it comes to Experimental and Operational Modal Analysis (EMA and OMA) the main challenge
is the extract the physical properties of the dynamic system being tested from the measured vibration data.
The vibration properties’ estimation can be carried either in time or in frequency domain using the so-
called parametric identification based on Linear Least Squares model (LLS) fitting. Several identifica-
tion methods exist for this purpose as, for instance, the poly-reference Least Squares Complex Frequency
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Domain (pLSCF) [1] formulated in frequency domain and the Stochastic System Identification (SSI) al-
gorithms developed to estimate the modal parameters from the measured responses [2], the Ibrahim Time
Domain (ITD) [3, 4] and the poly-reference Least Squares Complex Exponential (pLSCE) (also known
as LSCE-Prony) [5, 6].

It turns out that, in some circumstances, the accuracy of the LLS methods is not good enough due
several sources of errors such as noise and estimation errors. In these circumstances, the Non-Linear
Least Squares (NLLS) techniques such as those based in Maximum Likelihood (ML) can be employed
to iteratively improve the accuracy of LLS estimates for the modal properties. The underlying idea of
the NLLS identification with the ML-based approaches is to use the estimates from a LLS technique as
a starting guess to iteratively improve their accuracy by minimizing the cost function computed from the
difference between the measure data and model synthesized from the estimates obtained in each iteration.
In the case of ML-based methods, this is achieved by making use of the so-called Gaussian-Newton
algorithm in combination with the Levenberg–Marquardt [7] approach to prevent the cost function to
converge to local minima.

In [9–11] a frequency domain ML estimator is introduced to iteratively optimize the invariants of the
Frequency Response Function (FRF) in Laplace-domain, i.e., the mode shape vectors, continuous time
poles, modal participation factor vector and out-of-band residuals. The idea behind this approach is to
use the estimates from a previous LLS Modal Parameter Estimation (MPE) as starting guess. Then,
after performing some Gauss-Newton iterations, the ML-based approach yields the optimized estimates.
Afterwards, the authors formulated another ML-based technique in Laplace-domain to optimize the
LLS modal properties in the cases where reciprocity in considered [12]. One of the main advantages
of the ML-based MPE algorithms is that it considers both the measured vibration data and the noise
information in the optimization process. Therefore, apart from providing optimized estimates for the
modal properties, they also compute the confidence bounds for these estimates.

In this paper, an initial performance assessment of a new ML-based estimator is presented. The ML
estimator herein introduced is formulated in z-domain Modal Model, hence the acronym ML-ZMM.
Differently from the ML-MM described in [9, 10], the ML-ZMM aims at improving the estimates for
the discrete-time poles after some Gauss-Newton iterations, rather than the continuous-time poles. Apart
from assessing the ability of providing optimized estimates for the natural frequencies and damping
coefficients, the robustness in predicting confidence bounds for this properties is also evaluated in this
paper.

2. DERIVATION OF THE ML-ZMM

Once the modal parameters are estimated with a LLS algorithm, they can be optimized by means of
the Maximum Likelihood algorithm formulated using the modal model in z-domain. If displacement
responses are measured during the vibration test, the FRF matrix H(z) ∈ CNo×Ni with Ni inputs and
No outputs is modeled in z-domain by

H(z) =

Nm∑
m=1

ϕmlTm
z − µm

+
ϕ∗
mlHi

z − µ∗
m

(1)

with Nm denoting the number of vibration modes, µm ∈ C, ϕm ∈ CNo×1, lm ∈ CNi×1 stand for the
discrete-time poles, mode shape and the operational factor vectors corresponding to the mth vibration
mode; z = ejω∆t is the z-domain variable, with j =

√
−1 denoting the imaginary unit and ω = 2πf is

the angular frequency, where f designates the frequency in cycles per second (Hertz); and the operators
(•)∗ and (•)H denote the conjugate and Hermitian of a complex matrix, respectively. The continuous-
time poles, λm ∈ C, are related to their discrete-time counterparts as µm = eλm∆t, with ∆t ∈ R
standing for the sampling interval. The poles λm occur in complex-conjugated pairs and are related to
the eigenfrequencies ωnm and damping ratios ξnm as:
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λm, λ∗
m = −ωnmξnm ± j

√
1− ξ2nm

ωnm (2)

Compared to conventional LLS-based approaches, ML-based algorithms have the advantage of taking
into account not only the measured FRFs, but also the noise information during the parametric identi-
fication process, and thus, apart from providing the optimized estimates of modal parameters, they also
yield the confidence intervals of these estimates. The optimization of the starting parameters with the
ML-ZMM is accomplished by minimizing the following (negative) log-like cost function

No∑
o=1

Nf∑
f=1

l(Θ)ML−ZMM = Eo(Θ, zf )E
H
o (Θ, zf ) (3)

with Nf the number of frequency lines, zf = ejωf∆t the z-domain variable evaluated at frequency line f
and Eo(Θ, zf ) the row vector error between the measured and the estimated FRF for the oth measured
output, which is calculated as:

Eo(Θ, zf ) =

(
Ĥo1(Θ, zf )−Ho1(zf )

σHo1(zf )
. . .

ĤoNi(Θ, zf )−HoNi(zf )

σHoNi
(zf )

)
(4)

where Ĥo(Θ, zf ) ∈ C1×Ni , Ho(zf ) ∈ C1×Ni and σHo(zf ) ∈ R1×Ni are the oth row of the FRF in modal
model formulation (1), and of the measured FRF and its corresponding standard deviation, respectively.
The parameter Θ is a column vector with all the parameters to be optimized by means of the Gauss-
Newton Newton algorithm and is given by:

Θ =
[
θ1 θ2 · · · θNo θLµ

]T ∈ R2Nm(Ni+No) (5)

with

θLµ =
[
θL θµ

]
∈ C2NmNi (6)

The parameter θo ∈ C2Nm is a vector with the real and imaginary parts of the mode shape ordinates
corresponding to the oth output, given by

θo =
[
Re (ϕo1) Re (ϕo2) · · · Re (ϕoNm) Im (ϕo1) Im (ϕo2) · · · Im (ϕoNm)

]
∈ R2Nm (7)

where Re (•) and Im (•) stand for the real and imaginary parts of a complex number. The parameters
θL ∈ R2Nm(Ni−1) and θµ ∈ C2Nm in eq. (6) are columns vectors containing, respectively, the real and
imaginary parts of all the operational factors elements, and the real and imaginary parts of the discrete-
time poles. These parameters are defined, respectively, as:

θL =

[
Re (L11) · · · Re (LNk1) Re (L11) · · · Im (LNk1) · · ·

· · · Re (L1Nm) · · · Re (LNkNm) Re (L1Nm) · · · Im (LNkNm)

]
(8)

and
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θµ =
[
Re (µ1) Re (µ2) · · · Re (µNm) Im (µ1) Im (µ2) · · · Im (µNm)

]
∈ R2Nm (9)

where Lkm ∈ C is the kth element of the operational factor vector of the mth vibration mode lm ∈
CNi×1, with k = 1, 2, · · · , Nk, and Nk = Ni − 1, which means that only the operational factors that
differ from 1 are optimized by the algorithm during the performed iterations. As the identified operational
factors are normalized with regard to the maximum element of each mode in the identification with the
pLSCF, the derivatives of the elements that equals 1 are not evaluated and, therefore, are not included in
the vector defined by eq. (8). In fact, this works like a constraint, since the operational factors elements
that equal 1 are not updated during the minimization of the cost function (3). The maximum likelihood
optimization of the parameters Θ is accomplished by minimizing the cost function (3) in a non-linear
least squares sense. This is performed by means of the Gauss-Newton optimization algorithm combined
with Levenberg–Marquardt approach [7], which forces the cost function to decrease with the performed
iterations. The Gauss-Newton iteration is basically divided in two steps:

1. Solve the normal equations

JH
i Jivec(∆Θi) = −JH

i Ei for vec(∆Θi). (10)

2. Compute an update of the previous solution

Θi+1 = Θi +∆Θi (11)

where vec(∆Θi) ∈ R2Nm(No+Ni) is the perturbation on the modal parameters, Ei is the error between
the measured quantity and the parametric model (i.e. FRF equation in z-domain modal model formu-
lation (1)), Ji is the Jacobian matrix evaluated at the ith iteration, and the vec(•) stands for the column
stacking operator. The equation error calculated at the ith iteration Ei = E(Θi) is given by

Ei =


vec(E1(Θi))
vec(E2(Θi))

...
vec(ENo(Θi))

 ∈ RNfNoNi×1, Eo(Θi) =


Eo(ω1, Θi)
Eo(ω2, Θi)

...
Eo(ωNf

, Θi)

 ∈ RNf×Ni (12)

and the corresponding Jacobian matrix by

Ji =
[
∂E(Θi)
∂Θi

]
∈ RNfNoNi×2Nm(No+Ni) (13)

with Θi representing the parameters given by eq. (5) at the ith iteration. This matrix has the following
structure:

J =


Y1 0 · · · 0 X1

0 Y2 · · · 0 X2
...

...
. . .

...
...

0 0 · · · YNo XNo

 (14)

where Xo is a matrix with the derivatives of the equation error (4) with regard to the discreet-time poles
and operational factors, and Yo is a matrix with the derivatives with respect to the mode shapes. The
matrix Xo is computed as:
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Xo =
[
XL Xµ

]
(15)

where the entries XL and Xµ are sub-matrices containing the derivatives of the equation error (4) with
respect to the real and imaginary of the operational factors, real and imaginary parts of the discreet-time
poles, respectively. The sub-matrix XL is computed as:

XL =
[
XL1 XL2 · · · XLNm

]
(16)

with XLm containing the derivatives of the equation error with respect to the real and imaginary parts of
the elements of the operational factor of the mth mode. The sub-matrix Xµ is calculated as:

Xµ =

[
vec

{
∂Eo(Θ)
∂Re(µ1)

}
· · · vec

{
∂Eo(Θ)

∂Re(µNm )

}
vec

{
∂Eo(Θ)
∂Im(µ1)

}
· · · vec

{
∂Eo(Θ)

∂Im(µNm )

}]
(17)

The sub-matrices XLm in eq. (16) are defined by

XLm =

[
vec

{
∂Eo(Θ)

∂Re(L1m)

}
· · · vec

{
∂Eo(Θ)

∂Re(LNkm)

}
vec

{
∂Eo(Θ)

∂Im(L1m)

}
· · · vec

{
∂Eo(Θ)

∂Im(LNkm)

}]
(18)

with Nk = Ni − 1. It is worth noting that the same constraint strategy used in the definition of eq. (8)
must be used to calculate the derivatives in eq. (18). Therefore, only the derivatives with respect to the
operational factors elements which are different from 1 are included in this equation. In eq. (14), Yo is a
sub-matrix with the derivatives of the equation error with respect to the real and imaginary parts of the
oth mode shape vector

Yo =

[
vec

{
∂Eo(Θ)
∂Re(ϕo1)

}
· · · vec

{
∂Eo(Θ)

∂Re(ϕoNm )

}
vec

{
∂Eo(Θ)
∂Im(ϕo1)

}
· · · vec

{
∂Eo(Θ)

∂Im(ϕoNm )

}]
(19)

It is worth noting that, apart from the measured FRFs, the variance of the noise is also taken into account
during the parametric identification with ML-based algorithms. In the context of EMA, the variance is
estimated by means of the so-called H1 FRF estimator [7]. In case of single-input measurements (i.e
SISO and SIMO systems), the variance can be calculated as:

σ2
Hoi

=
1

Nb

(
1− γ2oi
γ2oi

)
|Hoi|2 (20)

where Nb and γ2oi stand for the number of averaged data blocks used to estimate the FRF and the coher-
ence function, respectively. Given the block structure of the Jacobian matrix, the normal equations (10)
are rewritten as follows


R1 0 · · · 0 S1

0 R2 · · · 0 S2
...

...
. . .

...
...

0 0 · · · RNo SNo

ST
1 ST

1 · · · ST
No

∑No
o=1 To





vec(∆θ1)
vec(∆θ2)

...
vec(∆θNo)
vec(∆θLµ)


= −



Re
(
Y H
1 E1

)
Re
(
Y H
2 E2

)
...

Re
(
Y H
No

ENo

)∑No
o=1Re

(
XH

o Eo

)


(21)
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with

Ro = Re
(
Y H
o Yo

)
∈ R(2NmNi)×(2NmNi)

So = Re
(
Y H
o Xo

)
∈ R(2NmNi)×(2NmNi)

To = Re
(
XH

o Xo

)
∈ R(2NmNi)×(2NmNi)

From eqs. (21), the perturbation on the coefficients vec(∆θo) (i.e., the perturbations on the real and
imaginary parts of the mode shape vectors) can be written as a function of the perturbation on the natural
frequencies, damping ratios, operational factors, vec(∆θLµ), as:

vec(∆θo) = −R−1
o (Re

(
Y H
o Eo

)
+ Sovec(∆θLµ)) (22)

and the perturbations vec(∆θo) can be eliminated from the last set of equations in (21) by means of
eq. (22), yielding

No∑
o=1

(To − ST
o R

−1
o So)vec(∆θLµ) = −

No∑
o=1

(Re
(
XH

o Eo

)
− ST

o R
−1
o Re

(
Y H
o Eo

)
) (23)

or in a more compact form

M1vec(∆θLµ) = M2 (24)

with

M1 =
(
To − ST

o R
−1
o So

)
, M2 =

No∑
o=1

(
ST
o R

−1
o Re

(
Y H
o Eo

)
−Re

(
XH

o Eo

) )
(25)

This elimination reduces the memory required to run the algorithm. An efficient implementation of the
ML-ZMM is only possible if the variances are taken into account in the cost function (3). Once the
perturbations on the discrete-time poles and operational factors are calculated in the last iteration by
means of eq. (23), then perturbations on the mode shape vectors are computed using eq. (22).

2.1. Estimation of the uncertainty bounds

One of the main advantages of the ML-based algorithms is the possibility to estimate the confidence
intervals for the identified modal parameters using the noise information measured together with the
FRFs during the vibration tests. As shown in [7], a good approximation of the covariance of the ML
parameters ΘML−MM is obtained by

Cov(ϕ,L, µ) ≃ 1

2
Re
([
JH
l Jl

])−1 (26)

with Jl the Jacobian matrix evaluated in the last iteration of the Gaussian-Newton algorithm. Taking
advantage of the structure of the Jacobian matrix and using the matrix inversion lemma [8], the covariance
of the natural frequencies, damping ratios and the operational factors can be estimated independently as
follows
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Cov(L, µ) ≃ 1

2
M−1

1 (27)

Therefore, it is not necessary to invert the full matrix in eq. (21). Once the uncertainties on the discrete-
time poles are found from (27), they can be propagated to the natural frequencies and damping ratios by
means of the following linearization formulas [13]:

Var(Fnm) ≃
[
∂fnm

(
θµm

)
∂θ̂µm

]
Cov(θ̂µm)

[
∂fnm

(
θµm

)
∂θ̂µm

]T
Var(ξnm) ≃

[
∂ξnm

(
θµm

)
∂θ̂µm

]
Cov(θ̂µm)

[
∂ξnm

(
θµm

)
∂θ̂µm

]T (28)

Given the structure of the Jacobian matrix, it is straightforward to apply matrix inversion lemma [8] and
derive the covariance of the mode shapes, yielding

Cov(ϕo) ≃ R−1
o +R−1

o SoM
−1
1 ST

o R
−1
o (29)

3. VALIDATION OF THE ML-ZMM IMPLEMENTATION

The example used to validate the ML-based approach discussed in Section 2. is illustrated in Fig. 1.
This system was used by [14] to compare different modal parameter estimation techniques in terms of
their sensitivity to statistical errors. It comprises five masses supported by cantilever beams which are
connected among themselves by arch springs. The exact natural frequencies, damping ratios and modal
masses of the system are given in Tab. 1, whereas the real modes are shown in Tab. 2. These properties
were used to generate the FRFs used in simulated EMA.

1 2 3 4 5

discrete

masses

arch springs

x

y

z

cantilever

beams

Figure 1: Five-DOF system connected with arch springs [14]

The system was excited by a white Gaussian noise at masses 1 and 2, and the responses were measured
at all DOFs, resulting in FRF matrix with two columns and five rows. The FRF was calculated in the
frequency range of 0-80 Hz with a resolution of 0.1 Hz. Afterwards, a colored noise was added to the
FRF matrix with a standard deviation of 10%. The noise was added to the real and imaginary parts
independently, and was calculated as a percentage of the absolute value of the FRF at each frequency
line. This was achieved by adding a complex random number to the FRF at each frequency line. This
number was computed so that its amplitude is a random number of a normal distribution and its phase is
an uniform random number between 0 and 2π.
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Table 1: Eigenfrequencies, damping ratios and modal masses of the five-DOF system

Mode fn [Hz] ξn [%] mi [Kg]

1 26.06 2 2.52
2 36.84 2 2.97
3 51.47 2 0.90
4 56.21 2 1.09
5 62.60 2 1.05

Table 2: Real modes of the five-DOF system

DOF/Mode 1 2 3 4 5

1 0.7147 1.0000 -0.0911 -0.9230 -0.6083
2 0.7166 0.9999 -0.1493 1.0000 -0.1937
3 0.7981 0.2257 0.1554 -0.1518 1.0000
4 0.8518 -0.5166 1.0000 0.1231 -0.3936
5 1.0000 -0.8590 -0.5860 0.0196 -0.2041

0 20 40 60 80
−130

−120

−110

−100

−90

−80

−70

Frequency [Hz]

|H
(ω

)|
,
σ
H
(ω

)
[d
B
]

 

 

Noisy FRF

Exact FRF

Noise std

(a)

0 1 2 3 4 5

0

5

10

15
10

4

(b)

Figure 2: Element(1,1) of the FRF matrix contaminated with 10% noise: exact (black line) and noisy (red line)
FRF, noise standard deviation (green line) and exact natural frequencies (vertical lines) (a); and cost function
variation over the performed ML-ZMM iterations

The exact and noisy element(1,1) of the FRF matrix, and the corresponding “exact” standard deviation
of the noise are shown in Fig. 2a. A set of 500 FRFs with 800 frequency lines contaminated with noise
was generated to perform Monte Carlo simulations in order to assess the efficiency of the proposed ML-
ZMM. The modal parameters of each dataset were identified with the pLSCF and LSFD estimators
and then used as starting values to be optimized by the ML-ZMM algorithm. The identification of each
dataset was performed using the full frequency band, i.e., with no upper and lower residual terms. In
Fig. 2b, it is shown that variation of the cost function, l(Θ)ML−ZMM , over the five performed iterations
in a typical Monte Carlo realization.

The variations of the pLSCF and ML-ZMM estimates for the 3rd natural frequency and damping ratio
over the Monte Carlo simulations are shown in Figs. 3. These results show that the bias on the pLSCF
estimates is removed after only 5 Gauss-Newton iterations of ML-ZMM. Apart from its optimization
capabilities, the ML-based techniques have also the advantage of predicting the confidence bounds for
the optimized estimates if the noise information is taken into account in the optimization process. In
Figs. 4, the standard deviations of the 3rd natural frequency and damping ratio (estimated after 5 itera-
tions of the ML-ZMM in each Monte Carlo realization) are compared to the respective sample standard
deviation. It is clear from these figures that the ML-ZMM provides accurate estimates for the sample
standard deviations of such modal properties.
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Figure 3: Estimates for natural frequency (a) and damping ratio (b) of the 3rd vibration mode obtained with the
pLSCF (blue dots) and ML-ZMM after 5 iterations (red dots)
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Figure 4: Estimates for the standard deviation of the natural frequency (a) and damping ratio (b) of the 3rd vibration
mode obtained after 5 ML-ZMM iterations (red dots) and sample standard deviation (solid black line)

4. CONCLUSIONS

In this paper, an initial performance assessment of a ML-based estimator formulated in z-domain modal
model is presented. Just like any other ML-based approach, the ML-ZMM requires a good starting
guess to assure convergence over the performed Gauss-Newton iterations. Despite the fact that any LLS-
based identification technique can be used to provide the starting guess, the proposed ML approach is
combined with the pLSCF estimator to retain the multi-reference information and improve the accuracy
of the LLS estimates. The main difference of the ML-ZMM herein introduced with regards to the
ML-MM described in [10] is that the former optimizes the discrete-time rather than the continuous-time
poles. The efficiency of the ML-ZMM was assessed by means a simulated application example with
no upper and lower residuals. The results obtained from such simulations show that not only did the
ML-ZMM reduce the bias on the estimates for the natural frequencies and damping ratios, but it also
provided accurate estimates for the confidence intervals of those estimates.
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ABSTRACT

Stochastic subspace identification (SSI) has become one of the key algorithms for the identification of linear
structural dynamic systems. Commonly used in operational modal analysis, SSI is an efficient method for
recovering the modal properties of a structure from measured data. When formed as “covariance-driven
SSI” (Cov-SSI) the method relies on the computation of the canonical correlations and canonical directions
between the past and future responses of the dynamic system, across a set of measured sensors. The
mathematical tool that recovers this information is known as canonical correlation analysis (CCA). Using
this knowledge, this paper presents two novel contributions. The first is a probabilistic interpretation of
Cov-SSI, through the substitution of traditional CCA with its probabilistic interpretation. The second is an
extension to the probabilistic SSI formulation, a robust form using the latent variable interpretation of the
Students’ T-distribution and robust CCA. This robust probabilistic SSI method is first benchmarked against
Cov-SSI on a simple simulated dataset. Both identification procedures are then assessed on their resistance to
noise and outliers in a corrupted dataset, typically caused by practically encountered scenarios such as sensor
drop-out or partial detachment. Cov-SSI is shown to perform poorly, producing unrealistic results, whilst
robust probabilistic SSI remains capable of confidently identifying the system in the presence of outliers.
This evidence may lead to suggest that this new robust method could be more regularly used over classical
Cov-SSI when the practitioner is worried about outliers in the measured response.

Key words: Probabilistic, Robust, Modal Analysis, System Identification, Stochastic Subspace
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1 INTRODUCTION

The characterisation of structural dynamic systems remains a key feature of modern engineering analysis.
Modal analysis is a common method of system identification used in industry and research to obtain the modal
properties of linear dynamic systems, namely the natural frequencies (eigenfrequencies), damping ratios and
mode shapes (eigenmodes). The availability of this modal information helps to facilitate more informed
decisions throughout the entire lifecycle of an engineering structure. Subspace identification algorithms
have gained increasing attention in the modal analysis community [1]. This is largely due to their inherent
robustness and ability to deal with a large numbers of inputs and outputs. Stochastic subspace identification
(SSI) is a prominent, time-domain method of experimental and operational modal analysis, operating in the
state space, that frequently appears in the literature and continues to be a reliable means of modal analysis
[2, 3, 4]. Subspace identification algorithms, such as SSI, are rarely used in isolation. In reality, these
algorithms form an integral part of a much larger set of tools and processes used in the design, manufacture
and maintenance of engineering structures. Such an example could be determining the modal properties of a
bridge, during operation, for the purpose of damage detection and prevention [5].

Currently, the vast majority of SSI algorithms operate deterministically. That is to say the algorithms do
not usually account for, or explicitly calculate, any uncertainty. However, a general shift to operate in more
probabilistic frameworks within many engineering fields such as structural health monitoring (SHM) [5]
and digital twins [6] has led to an increase in probabilistic methods. This increase is predominantly due to
the significant value associated with quantifying and applying uncertainty through probabilistic analysis [7].
The inherent use of modal information in fields such as SHM and digital twins, coupled with their use of
probabilistic frameworks, highlights an explicit need to develop probabilistic modal analysis tools. Recasting
SSI as a probabilistic method would add more value to its inclusion as a component in broader probabilistic
frameworks and open up avenues for future research. The construction and definition of the full framework,
however, is beyond the scope of this paper.

An established mathematical concept, upon which covariance-driven SSI (Cov-SSI) fundamentally depends,
is canonical correlation analysis (CCA) [8]. CCA is concerned with finding the canonical vectors or directions
between two datasets such that they are maximally correlated with one another; thus diagonalising the cross-
covariance matrix. The solution to CCA is typically recovered via the solution to a generalised eigenvalue
problem which can be achieved via the singular value decomposition (SVD). In 2005, Bach and Jordan [9]
proposed a probabilistic interpretation of CCA (PCCA) which followed the same latent approach taken by
Tipping and Bishop in their development of probabilistic principal component analysis [10]. This probabilistic
viewpoint on the algorithm deepened the understanding of CCA and could provide a deeper understanding
of SSI and unlock its potential within probabilistic frameworks. Therefore, in an effort to formulate a
probabilistic interpretation of SSI, this paper takes a logical approach and first reconstructs Cov-SSI using
probabilistic CCA.

The ability to reformulate SSI as a probabilistic model also allows consideration of a statistically robust
extension using standard probabilistic methods. A typical weakness with current SSI methods lies in their
handling of outliers. Outliers and non-Gaussian noise may appear on time series data in practical measurement
campaigns from sources such as electrical noise, or from unpredicted events that are often independent of
the system being measured. In the case of OMA, these ‘events’ refer to practically encountered scenarios
such as sensor drop-out or partial detachment. In typical data analysis, data will often be pre-processed to
remove these outliers and ‘clean’ the dataset before use. However, this approach cannot be easily applied to
SSI due to its dependency on sequential data, required to obtain the Hankel matrices used in the analysis. This
presents a significant dilemma. During the application of standard SSI, these outliers remain present in the
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analysis, distorting the measurement of the response and result in a misidentification of the system. However,
there is no simple mechanism to deal with such anomalies in SSI. Using a robust form of CCA, developed by
Archambeau, Delannay and Verleysen [11], this paper exploits this extension and presents a robust version of
Cov-SSI and demonstrates its capability on a simple dynamic system, with particular attention paid to the
methods ability to combat outliers arising from sensor dropout.

2 COVARIANCE-DRIVEN STOCHASTIC SUBSPACE IDENTIFICATION (COV-SSI)

This section gives a brief overview of Cov-SSI for an output-only case, highlighting the presence of CCA
in the method. This derivation is based on the descriptions given by Katayama [12], Van Overschee and De
Moor [13] and Döhler and Mevel [14]. The reader is directed towards the aforementioned texts for a fuller
derivation and specifics. Only the most important details are repeated here.

Consider a nth order state space model of a linear dynamic system, equivalent to a mechanical system with m
degrees of freedom, such that n = 2m, in the form

xk+1 = Axk + wk (1a)

yk = Cxk + vk (1b)

where yk ∈ Rp is the output vector at time k, xk ∈ Rn is the internal state vector, A is the state matrix and C
is the output matrix. wk ∈ Rn and vk ∈ Rp are samples of the process noise and measurement noise at time k,
respectively. These are assumed to be stationary, white noise Gaussian with zero mean and covariance matrix

E
{[
wk

vk

] [
w

T

k v
T

k

]}
=

[
Q S

S
T

R

]
(2)

where E[·] denotes the expectation.

Now consider a finite dataset, sampled from a stationary process, given by {yk, k = 0, 1, . . . , N + 2j − 2},
where j > 0 and N is sufficiently large (i.e much larger than 2). Here y are response measurements of a
dynamic system (e.g. accelerometer data) given some broadband excitation. As is common, the response,
based on all measurement channels, p, can be arranged into a block Hankel Matrix using lags to give

Y0|2j−1 ∈ R2pj×N =

[
Y0|j−1

Yj|2j−1

]
=

[
Yp

Yf

]
“Past”
“Future”

(3)

where j > n and the number of columns of block matrices is N . The resultant cross-covariance matrix of the
future with the past is therefore given by

Σ =
1

N

[
Yp

Yf

] [
Y

T

p Y
T

f

]
=

[
Σpp Σpf

Σfp Σff

]
(4)

where Σpf and Σfp are finite block Hankel matrices, and Σff , Σpp are finite block Toeplitz matrices. The
canonical correlations Λ = diag(λ1, · · · , λn) between the future and past covariance matrices are the singular
values, obtained through the singular value decomposition (SVD), of the covariance matrix

Σ
−1/2
ff ΣfpΣ

−1/2
pp = UΛV

T
⋍ ÛΛ̂V̂

T

(5)

such that,

Σfp ⋍ Σ
1/2
ff ÛΛ̂V̂

T

Σ1/2
pp (6)
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where Λ̂ neglects sufficiently small singular values (canonical correlations) in Λ, such that the resultant
state vector has the dimension n = dim(Λ̂). The block Hankel matrix, Σfp, can be decomposed into the
corresponding extended observability (O) and controllability (C) matrices using Σfp = OC where

O = Σ
1/2
ff ÛΛ̂

1/2
, C = Λ̂

1/2
V̂

T

Σ1/2
pp (7)

respectively and where rank(O) = rank(C) = n. The extended controllability and observability matrices
can then be subsequently used to recover the state matrix A and output matrix C 1 and trivially, the modal
properties in the usual manner for operational modal analysis. The reader is again directed towards [12, 13, 14].

3 PROBABILISTIC SSI

A probabilistic interpretation of CCA (PCCA) was developed by Bach and Jordan (2006) [9] using a latent
variable model. This followed a similar approach taken by Tipping and Bishop (1999) [10] in their earlier
development of probabilistic principal component analysis. The latent model presented by Bach and Jordan is
shown graphically in Fig. 1 and given in Equations 8-10.

xn

y1n

y2n

N

Fig. 1: Graphical latent model for Probabilistic Canonical Correlation Analysis (PCCA)

xn ∼ N (0, Id) (8)

y1n|xn ∼ N (W1xn + µ1,Σ1) (9)

y2n|xn ∼ N (W2xn + µ2,Σ2) (10)

whereN (µ,Σ) represents a multivariate Gaussian with mean µ and covariance Σ, {xn}Nn=1 is a set of lower
dimensional latent variables, {y1n}Nn=1 and {y2n}Nn=1 are two sets of observations (with N being the total
number of observations), W1 and W2 are the corresponding linear projections or ‘weights’, µ1 and µ2 the
corresponding means, Σ1 and Σ2 the corresponding covariance matrices

Using this model, Bach and Jordan demonstrated that the MLE estimates of the transformations to the data
space from the latent space, the weights (W), contain all the necessary information obtained through the
SVD. Furthermore, due to the nature of latent models, Bach and Jordan were also able to provide expectation-
maximisation (EM) update equations as an alternative means of finding the MLE solution, negating the need
for the SVD if required. Substituting this probabilistic method for traditional CCA in the SSI algorithm, it can
be trivially shown that the MLE estimates for the weights Ŵ1 and Ŵ2 are equivalent to the observability

1The method described here for recovering the system matrices is one of many. See Stochastic Balanced Realisation Algorithm B,
Chapter 8 in Katayama [12]
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matrix and controllability matrix transposed, respectively, that are recovered in traditional SSI. Recall Equation
7. The MLE estimates for the weights are shown in Equations 11 and 12.

Ŵ1 = (Σff )
1/2V1dM1 = ΣffU1dM1 = O (11)

Ŵ2 = (Σpp)
1/2V2dM2 = ΣppU2dM2 = CT (12)

where M1,M2 ∈ Rd×d are arbitrary matrices such that M1M
T
2 = Λ, the columns of U1d and U2d are the

first d canonical directions. Note U and V here are different from the left and right singular vectors defined
previously. The reader should also note that throughout the rest of the paper, Cov-SSI and probabilistic SSI
(solved using direct MLE estimation), will be synonymous with one another since Cov-SSI and the PCCA
formulation are shown to be equivalent in the MLE case.

4 ROBUST PROBABILISTIC SSI

Following the probabilistic interpretation of CCA, Archambeau, Delannay and Verleysen [11] used a similar
approach to construct a robust equivalent of PCCA. This alternative model relies on the assumption that the
observed and latent variables can be modelled by a Students’ T-distribution S(µ,Σ, ν) with mean µ and
covariance Σ. The T-distribution has heavier tails than a Gaussian which are determined by the parameter, ν
(degrees of freedom). The presence of heavier tails is preferable as it makes the T-distribution better equipped
to handle outliers as it is more likely to capture them in the distribution. Using the T-distribution, Archambeau
et. al. consequently defined the following probabilistic model:

p(xn) = S(xn|0, Id, ν) (13)

p(y1n|xn) = S(y1n|W1xn + µ1,Σ1, ν) (14)

p(y2n|xn) = S(y2n|W2xn + µ2,Σ2, ν) (15)

where {xn}Nn=1 is a set of lower dimensional latent variables, {y1n}Nn=1 and {y2n}Nn=1 are two sets of
observations (with N being the total number of observations), W1 and W2 are the corresponding linear
projections or ‘weights’, µ1 and µ2 the corresponding means, Σ1 and Σ2 the corresponding covariance
matrices and ν is the degrees of freedom. Making the set of latent variables explicit, the model can be
reformulated into the following, more compact, form:

p(un) = G
(
un|ν2 ,

ν
2

)
(16)

p(xn|un) = N
(
xn|0, u−1

n Id
)

(17)

p(yn|xn, un) = N
(
yn|Wxn + µ, u−1

n Σ
)

(18)

where G(·, ·) represents the Gamma distribution, W = [W
T

1 ,W
T

2 ]
T
, µ = [µ1,µ2]

T
and Σ a block covariance

matrix containing Σ1 and Σ2 along the diagonal. The graphical model is shown in Figure 2.

Unlike the standard probabilistic result, in which the MLE can be obtained directly or using the EM algorithm,
the MLE of the robust method can only be retrieved using EM. The intractability of the MLE comes as a
result of the extra (Gamma) distribution present in the model. The robust CCA method, specifically the EM
update equations for the parameters, is given and follows from the derivation in [11]. These equations are
provided due to an error identified by the authors in the original derivation. The main variation can be seen
in the definition of the covariance update in Equation 20c. The E-step is given by Equations 19a - 19d and
the M-step by Equations 20a - 20d. In each iteration, the MLE estimate of ν is found by carrying out a line
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Fig. 2: Graphical model for latent interpretation of robust CCA

search on Equation 20d.

ūn = D+ν

(yn−µ)TA(yn−µ)+ν
(19a)

log ũn = ψ(D+ν
2 )− log

(
(yn−µ)

T
A(yn−µ)+ν
2

)
(19b)

x̄n = B−1W
T
Ψ(yn − µ) (19c)

S̄n = B−1 + ūnx̄nx̄
T

n (19d)

where D = D1 + D2, Ψ = Σ−1, A−1 ≡ WW
T
+ Ψ−1, B ≡ WΨW

T
+ Id, ūn ≡ E{un}, log ũn ≡

E{log un}, x̄n ≡ E{xn} and S̄n ≡ E{unxnx
T

n}. In (19b), ψ(.) denotes the digamma function.

µ← (
∑

n ūn(yn −Wx̄n))(
∑

n ūn)
−1 (20a)

W← (
∑

n ūn(yn − µ)x̄
T

n)(
∑

n S̄n)
−1 (20b)

Σi ← ( 1
N

∑
n{ūn(yn − µ)(yn − µ)

T − ūn(yn − µ)(Wx̄n)
T

− ūn(Wx̄n)(yn − µ)
T
+WS̄nW

T})ii (20c)

0 = 1 + log(ν2 )− ψ(
ν
2 ) +

1
N

∑
n{log ũn − ūn} (20d)

where i ∈ 1, 2 such that (·)11 and (·)22 denote the matrix upper left block of size D1 ×D1 and the matrix
lower right block of size D2 ×D2, respectively.

In a similar way to probabilistic SSI, robust CCA can be substituted for traditional CCA in Cov-SSI where
the resultant estimates for the weights (obtained through EM) can be used to recover the observability matrix
and controllability matrix transposed, respectively.

5 RESULTS AND DISCUSSION

To benchmark the identification performance of the new robust SSI method and compare it to Cov-SSI,
response data was repeatedly generated using a generic 3 degree of freedom (DOF) linear dynamic system, with
natural frequencies ωn = {24.2030, 44.7214, 58.4314} and damping ratios ζn = {0.0029, 0.0022, 0.0012},
due to a white noise excitation. The system was simulated 15 times at a sample rate of 1 × 103 Hz and
generated 4086 samples.

To assess and compare the resistance of both methods to outlier influence during system identification, the
same datasets were then artificially corrupted with outliers indicative of sensor drop out. The rate of sensor
dropout was fixed at 0.1% per sensor channel, equivalent to 4 data points per channel, and were chosen at
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random. Dropout was simulated by setting the affected data point to some negative value which mimics a data
acquisition system drifting to its lower supply rail.

Both methods were initially applied to the clean dataset and used to identify the system, assuming a model
order of 6 (3 modes). The obtained natural frequencies can be seen in Figure 3a. It is evident, and was
expected, that both methods perform comparably not only in their identification of the natural frequencies, but
also in their overall variance. In the absence of any outliers the robust method should tend towards a Gaussian
over the latent space recovering PCCA which is equivalent to Cov-SSI. The variation seen in the methods
arises from the random realisations of the white noise forcing input.

(a) (b)

Fig. 3: (a) Box and whisker plots of the natural frequency estimates identified from the clean dataset using Cov-SSI
(left) and robust probabilistic SSI (right). (b) Box and whisker plots of the natural frequency estimates identified from
the corrupted dataset using Cov-SSI (left) and robust probabilistic SSI (right).

The methods were then subsequently used on the corrupted dataset. The obtained natural frequencies are
shown in Figure 3b. It is immediately apparent that the performance of standard SSI has dropped significantly.
This has ultimately resulted in incorrect estimates of the natural frequency and a greater variance in the
estimated poles of the state matrix A which defines the dynamics. In striking contrast, the robust method was
still very capable of successfully identifying the system, albeit with a marginally increased variance in its
results when directly compared to the clean case. A comparison of the two methods can be made in more
detail when viewing the plot of identified identified continuous time complex system poles. This is shown in
Figure 4.

For the results of standard SSI, the majority of the poles do not align with the true values. Several poles
also have no corresponding conjugate and some would even imply unstable behaviour. It is known from the
dynamics of the system that these results cannot be physically true as it is expected that poles should appear in
conjugate pairs on the left hand half plane to ensure ζ < 0. It is fair to conclude, therefore, that identification
ability of standard SSI has been compromised due to the presence of outliers. Remembering that only 0.1%
of the data has been distorted, this result is quite concerning when relying on SSI to perform operational
identification. It is now also possible to contrast this result with that obtained by the robust method. It can be
see that the poles identified by the robust algorithm, although still deviating in some cases, generally cluster
close to the known true poles of the system. Additionally, all poles identified appear in conjugate pairs and in
only one instance is non-physical damping found.
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Fig. 4: A plot of the real and imaginary parts of the true complex system poles and the identified poles using standard
SSI and Robust SSI.

6 CONCLUSIONS

In this paper, two novel methods have been presented. The first was a probabilistic interpretation of covariance-
driven stochastic subspace identification (Cov-SSI) using probabilistic canonical correlations and the second
was a robust interpretation of Cov-SSI using robust canonical correlations. This robust formulation was
only made possible due to the probabilistic interpretation of SSI. The robust probabilistic SSI method was
benchmarked against Cov-SSI and demonstrated to be a comparable standard of system identification on a
clean dataset. The two methods were then tested on a corrupted version of the dataset, containing a subset of
outliers. Whilst Cov-SSI performed poorly in its identification of the system, producing unrealistic results,
the new robust method remained capable of confidently identifying the system. This evidence may lead to
suggest that the robust method should be more regularly used over classical Cov-SSI.

Following this initial scope of work, future work will aim to apply this method to a selection of case studies,
attempt to quantify its performance on different types of outliers seen in OMA, and conduct a rigorous
exploration of the effect on the stabilisation diagram.
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ABSTRACT 

Modal identification procedures are used to evaluate the vibration properties of structures and can be 

divided into two branches, that is Input-Output and Output-Only analyses. Several methods are 

developed to assess the accuracy of the modal parameter estimates in the Input-Output framework, 

whereas deeper investigation is still needed to assess the confidence boundaries of Output-Only 

methods. Such accuracy of the estimates is generally given by comparing them with the expected set of 
modal parameters provided by a numerical model. In this paper, the accuracy of the modal parameters 

estimated using Output-Only techniques is investigated aided by the use of both time and frequency-

based estimating methods coupled to a sensitivity analysis when varying data acquisition settings. 

Furthermore, insights into the robustness of the estimating process to the measuring chain is obtained 

from several independent tests and changes to the boundary conditions. Indeed, the experimental 
boundary conditions are altered by using materials with different elastic properties and different 

connection configurations. The uncertainties arising from the estimating process and the experimental 

setup mounting are evaluated for the natural frequencies, damping ratios, mode shapes through several 

modal assurance criterion formulations. The tests show that the accuracy of modal parameter estimates 

can be assessed and increased by weighting the similarity between multiple estimates of the same 
vibration mode. The accuracy depends on mounting configurations due to changes of structural 

properties. An evaluation of the overall accuracy of the modal parameter estimates finds that the 

accuracy is increased when information from multiple OMA algorithms is used. 

Keywords: Operational Modal Analysis, Identification, Modal Parameters, Modal Assurance 

Criteria, Signal Processing 

1. INTRODUCTION 

Vibrations are present in all structures and in some cases the vibration amplitudes either deteriorate or 

damage the structure. Modal parameters are used to mathematically describe the vibration 
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characteristics of a structure which can be used to assess if the vibrations have potential of causing 

damage to the structure. Therefore, it is desired to estimate the modal parameters for specific structures. 
Modal parameters can be estimated using numerous methodologies which assume different causes for 

measured vibrations to arise. 

Experimental Modal Analysis (EMA) has been exploited for decades and often provides an indication 
of the expected accuracy for estimated modal parameters for example through an evaluation of the 

coherence function. In [1], an overview from Schwarz and Richardson describes different EMA testing 

and modal extraction techniques. The interest of estimating modal parameters from e.g., large scale 

structures, vehicles, rotating machines, etc., is continuously increasing and in many cases excitation 

forces that are not controllable nor measurable exist. These excitations are named ambient excitations 
and undermine the assumption of EMA methods that all input excitations are measurable. Reynders [2] 

provides a review and comparison of methods that are capable of extracting modal parameters both for 

inputs that are known and inputs that include or only consist of ambient excitations. When no measured 

input excitations exist, Operational Modal Analysis (OMA) techniques are used. OMA identification 

techniques are often tested on simulated responses for simple systems to grow confident with the 
accuracy of extracted modal estimates in experimental studies. As an example, Cara et al. [3] test an 

algorithm that calculates modal participation factors using simulated data of a spring, mass, and damper 

system before using the algorithm to calculate modal parameters and participation factors from a steel 

mast structure. In [4], Reynders uses data-driven stochastic subspace identification on a simulated 

response to estimate statistical uncertainties for the extracted modal parameters to navigate in the choice 

of input parameters to the algorithm. The algorithm is then applied to a concrete beam examined under 
destructive loading. The beam is found to have great changes in modal parameters as damage start to 

appear. Equivalent analyses on changing modal parameters for structures have spawned the idea of 

structural health monitoring. The monitoring requires use of automated methods in modal analysis 

which have been intensively tested. Automated OMA methods compare similarities between the modal 

parameter estimates obtained in a stabilization diagram to group modal parameters that describe the 
same vibration mode. In [5], Magalhães et al. use a structural health monitoring algorithm on a bridge. 

The algorithm calculates an Euclidian distance to define differences between modal parameter 

estimates. The modal parameters are grouped using a hierarchical cluster based on their similarities. A 

similar approach is presented in [6] with the addition of soft and hard validation criteria for modal 

parameter estimates to clear the stabilization diagram from certainly spurious poles. In [7], Covioli and 
Coppotelli test the use of gaussian mixture models for grouping modal parameters within a stabilization 

diagram and present the method to evaluate flight vibration test data. 

In rotating machines, modal parameters depend on operational conditions in machine elements such as 
e.g., seals, bearings, impeller, etc. The dependency of operational conditions can be translated into a 

change of boundary conditions for a structure and has interesting prospects with the possibility of 

monitoring the changes made to modal parameters. The presented work aims to assess the accuracy of 

modal parameter estimates obtained from a simple and well-controlled experimental study. The 

evaluation of the accuracy is tested based on an assumption that independent of the method and 
acquisition settings used, extracted modal parameter estimates should be similar. To evaluate the 

similarity between the modal estimates, several formulations of modal assurance criteria are tested. The 

modal assurance criteria provide an estimate of the sensitivity for the modal parameters to the algorithm 

and number of samples used. The modal identification experiments are repeated to indicate the 

uncertainty of the modal parameter estimates with the possibility of calculating mean and standard 

deviations related to the identification routines. A comparison of the results to modal parameter 
extractions from EMA procedures is used to investigate if the obtained uncertainty can be related to the 

accuracy of the modal parameters from the OMA procedures. The estimated accuracy and uncertainty 

of the modal parameters are used to investigate if changing the boundary conditions of the beam can be 

detected through estimates of the modal parameters. Toward an automatic modal parameter extraction 

algorithm, the proposed investigation will be able to indicate the accuracy for modal parameters related 

to a specific vibration mode from the modal parameter estimates acquired in a stabilization diagram. 
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2. TEST FACILITY 

The tests presented in this paper have been carried out at the Structural Dynamic Laboratory at the 

University of Rome “La Sapienza” as part of a collaboration between the University of Rome “La 

Sapienza” and the Technical University of Denmark. A cantilever beam made from aluminium is tested. 

In figure 1, the cantilever beam setup is presented including the positions of seven accelerometer 
measurement points. A total of four accelerometers are used, meaning that three accelerometers are 

rowing over two experiments. The accelerometers in positions two through four (Acc2−4) in one 

experiment are moved to accelerometer positions five through seven (Acc5−7) in a second experiment. 

A point mass equivalent to that of the accelerometer is positioned at the accelerometer locations which 

are not measured in that experiment. Seven different boundary conditions are tested. Of the seven 

boundary conditions, four configurations consist of a screw torque of 30 NM with the interface between 

a clamping device and beam being either a) steel - aluminium, b) rubber mat - aluminium, c) thin foam 

- aluminium, or d) thick foam - aluminium. One boundary condition with a screw torque of 10 NM for 
the interface type e) steel - aluminium is also tested along with two boundary conditions with a screw 

torque of 5 NM for the interfaces f) steel - aluminium and g) stiff foam - aluminium. The number of 

tests for each configuration are described in table 1. 

Table 1. Summary of number of tests and experiments carried out for different clamping configurations. 

Clamping configurations 

Screw torque [NM] 30 30 30 30 10 5 5 

Boundary vs. aluminium Steel Rubber mat Thin foam Thick foam Steel Steel Stiff foam 

Experiments 11 1 1 1 1 1 1 

OMA Tests per experiment 76 76 76 76 76 76 76 

EMA Tests per experiment 2 2 2 2 2 2 2 

 
Figure 1. Presentation of the cantilever beam with accelerometer positions in schematic (left hand side) and a 

picture of the second rowing experimental configuration (right hand side). 

The cantilever beam is tested under influence of two types of disturbances. The first type (i) of 

disturbance is an impact at the point Acc5 and the second type of disturbance (ii) consists of multiple 
impacts distributed along the length and width of the beam, also at locations different from 1 to 7. When 

the first type of disturbance (i) is tested, both the impact force and the resulting accelerations are 

measured for 4 s with a sampling frequency of 1024 Hz. 8 impacts with high correlation are used in the 

data analyses. During the experiments with the second type of disturbance (ii), only the resulting 

accelerations are measured. The OMA identification experiments are carried out using 217 (131,072) 

number of samples sampled at a sampling frequency of 1024 Hz. The consistency of the modal 
parameter estimates is tested by repeating the identification experiments and analyses 10 times under 

clamping configuration a). 
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3. ANALYSIS METHODOLOGIES 

The two types of experiments (i) and (ii) require algorithms built on a different set of assumptions to 

obtain estimates of modal parameters. Experiments of type (i) require methods within the framework 

of Experimental Modal Analysis (EMA), while Operational Modal Analysis (OMA) methods are 

required to obtain estimates of modal parameters for the cantilever beam when experiments of type (ii) 
are used. The EMA algorithms considered in this analysis exist in the LMS Test.Lab Modal Analysis 

software package in the form of PolyMAX and Time MDOF. The software is described in a manual [8] 

and the idea behind PolyMAX is presented in [9]. The OMA algorithms used in this study are Frequency 

Domain Decomposition (FDD), Hilbert Transform Method (HTM), Stochastic Subspace Identification 

(SSI), and Balanced Realization (BR). The FDD and SSI methods are presented in [10] with the BR 

method being closely related to the SSI method. A description of the HTM method is available in [11]. 

3.1. Weighting methods 

The resulting estimates of the modal parameters describing the vibrations of the cantilever beam are 

compared using different definitions of modal assurance criteria. Initially, the classical eigenvalue 𝜆 

and an eigenvalue not considering the damping contribution of the modal parameter 𝜆𝑛𝐷 are defined in 

Eq. (4). The vibration frequency 𝜔𝑑 and damping factor 𝜁 are required for estimating the classical 

eigenvalue, while only the vibration frequency is used as the eigenvalue not considering damping.  

𝜆 = −𝜁 ⋅
𝜔𝑑

√1 − 𝜁 2
+ 𝑖 ⋅ 𝜔𝑑 , 𝜆𝑛𝐷 = 𝜔𝑑  (1)  

Vacher et al. [12] describe the use of different modal assurance criteria with its simplest form MAC in 

Eq. (5) able to define the collinearity between two monophase vectors 𝐯1 and 𝐯2. 

MAC(𝐯1,𝐯2) =
|𝐯1

∗𝐯2|2

||𝐯1|| ⋅ ||𝐯2||
 (2)  

Here, {}∗  denotes the conjugate transpose of a complex vector. The simplest form of the modal 

assurance criterium can be extended to compare vectors that are not monophase by adding a contribution 

that consider the collinearity between (𝐯1,𝐯2) and (�̅�1,𝐯2) simultaneously, shown in Eq. (6). 

MACX(𝐯1,𝐯2) =
(|𝐯1

∗𝐯2| + |𝐯1
T𝐯2|)

2

(𝐯1
∗𝐯1 + |𝐯1

T𝐯1|) ⋅ (𝐯2
∗𝐯2 + |𝐯2

T𝐯2|)
 (3)  

{}T denotes the transpose of a vector. If also the estimated eigenvalues are compared, an extension with 

the consideration of the free-decay responses can be written in Eq. (7). The eigenvalues to be compared 

can be the classical or the one that does not consider the damping contribution. 

MACXP(𝐯1 ,𝜆1,𝐯2 ,𝜆2) =

(
|𝐯1

∗𝐯2|
|𝜆1

∗ + 𝜆2| +
|𝐯1

T𝐯2|
|𝜆1 + 𝜆2|

)

2

(
𝐯1

∗𝐯1

2|Re(𝜆1)| +
|𝐯1

T𝐯1|

2|𝜆1|
) ⋅ (

𝐯2
∗𝐯2

2|Re(𝜆2)| +
|𝐯2

T𝐯2|

2|𝜆2|
)

 (4)  

The modal assurance criterium using the eigenvalues that do not consider the damping contribution is 

denoted MACXPnD. The modal assurance criteria are used to compare estimates of the modal properties 

that describe the same vibration mode. In figure 2, a schematic of the use of the modal assurance criteria 
is presented. It includes a symmetric matrix that is obtained by comparing an estimated modal parameter 

set from multiple modal analysis algorithms. A resulting modal parameter estimate from one experiment 

is wished to be obtained using the information provided by all the tested methods.  By a summation 

through the rows of the symmetric matrix and a normalization of the resulting vector, the modal 

parameter estimates can be weighted by a vector 𝐰. The obtained weights describe how comparable a 

modal parameter set is to estimates from other methods. If the value of a method is close to one, the 
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Figure 2. Schematic of modal parameter estimate comparison through modal assurance criteria to obtain a  

weighting vector. 

results from this method compare well to other estimations and vice versa. The weights can then be 

used to reduce the influence on the resulting modal parameter set from modal parameter estimates that 
compare little to estimates from other estimation methods. Here, the weights are used in the calculation 

of statistical properties that estimate the resulting modal parameter set and help evaluate the uncertainty 

of the obtained estimates. Illustrated for the vibration frequency, the mean value μ and standard 

deviation σ can be calculated using the weighting vector as described in Eqs. (8) and (9), respectively. 

Regular mean μ and standard deviation σ can be obtained by assuming an equal weighting for all 

estimation methods [13]. 

μ(𝛚𝑑) =
1

∑ (𝑤𝑖 )𝑛
𝑖=1

⋅ ∑(𝜔𝑑,𝑖 ⋅ 𝑤𝑖 )

𝑛

𝑖=1

 (5)  

σ(𝛚𝑑) = √
1

∑ (𝑤𝑖 )𝑛
𝑖=1 − 1

⋅ ∑ ((𝜔𝑑,𝑖 − μ(𝛚𝑑))
2

⋅ 𝑤𝑖 )

𝑛

𝑖=1

 (6)  

4. RESULTS 

Experimental acceleration signals are tested using multiple OMA methods to investigate if a 

comparison between estimated modal parameters provides insights on the accuracy of the results from 
that experimental test. Figure 3 presents modal estimates for vibration mode 1 from all OMA methods 

used on acceleration signals acquired from one experimental test. Signal block lengths varying from 20 

s to 24 s with total signal lengths varying from 1 block length until 27 (128) s are evaluated for the FDD 

and HTM algorithms (for a signal block length of 1 s, total signal lengths of 1 s, 2 s, 4 s, 8 s, 16 s, 32 s, 

64 s, and 128 s are used). Total signal lengths from 20 s to 27 s are evaluated for the BR and SSI 

algorithms. The modal estimates include the vibration frequency, damping factor, and mode shape. 

 
Figure 3. Modal parameter estimates for vibration mode 1 depending on method and data acquisition settings. 
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The vibration mode is normalized at Acc1 and scaled by a factor of 0.02. This is done to ensure that the 

vibration mode is not phase-shifted by a change of the point with maximum deflection for the estimated 

mode shape. The resulting estimates of the modal parameters do show differences in the modal 

parameter estimates that are both dependent on the method and data acquisition settings used.  

The similarities between the estimates of each vibration mode are evaluated using the modal assurance 

criteria described in section 3.3 to visualize differences between the modal parameters from the different 

OMA methods. The MACXP comparison of vibration modes 1 through 3 are presented in figure 4. As 

indicated by figure 3, the MACXP depicts that the estimated modal parameters for vibration mode 1 

show differences between estimation methods and data acquisition parameters used. The MACXP also 

indicates that the vibration modes 1 through 3 are differently affected by the estimation methods and 

data acquisition settings. The visualization shows that the estimated modal parameters for vibration 
mode 3 has most differences depending on estimation methods and data acquisition parameters, the 

modal parameters for vibration mode 1 have slightly less differences, while the estimations for vibration 

mode 2 are least affected by the methods and acquisition parameters used. 

 
Figure 4. MACXP values for modal parameter estimates depending on algorithm and data acquisition settings 

for vibration modes 1 through 3. 

The visual comparison of the modal parameter estimates is used to formulate a weighting vector to 

compensate for differences between the estimates when calculating statistical parameters. An analysis 

about which part of the estimates that introduce the differences is conducted by comparing the resulting 

weightings from the different modal assurance criteria in figure 5. The MACX and MACXPnD present 
high and similar weights for the estimated modal parameters describing vibration mode 1 which indicate 

that both the estimated mode shape and vibration frequency are quite similarly estimated between the 

estimation methods and data acquisition parameters used. The weights are slightly lower for the MAC 

results when the estimations contain a complex part in the mode shape vector which is mostly 

pronounced in the HTM algorithm. This illustrates that the MAC should be used with care as described 

in [12]. The MACXP presents significant differences between the resulting weights which is expected 

from the illustration of the compared methods from figure 4. The large difference between the MACXP 

weights and the weights from the other modal assurance criteria must be explained in the estimation of 

the damping coefficient. Partly because the damping coefficient estimates are known to carry a high 

uncertainty and partly because the contribution is provided with a larger weight in the 
|𝐯1

∗ 𝐯2|

|𝜆1
∗ +𝜆2 |

 term of 

the MACXP expression due to smaller numbers in scale of the denominator. The comparisons between 

 
Figure 5. Weightings for modal parameter estimates depending on method and data acquisition settings for 

vibration mode 1 when using different modal assurance criteria. 
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the modal assurance criteria show the same tendency for vibration modes 2 and 3. However, the 

differences between the weights are not as pronounced for the MACXP of vibration mode 2. 

The weighted mean and standard deviation are calculated from the MACXP for each repeated experiment 

to test the consistency between the estimations. The resulting weighted means of the estimations are 

used to generate a weighted mean and standard deviation for the estimations across all the repeated 

experiments using the MACXP. The two statistical evaluations allow one to focus on uncertainties in 

different parts of the investigation. The distributions calculated from the individual experiments 

primarily present the uncertainties from the methods and data acquisition parameters used to estimate 
the modal parameters while the distribution of the mean values primarily express uncertainties in the 

experimental setup and testing method. Additionally, the distributions are compared by subtracting the 

mean from each distribution and scaling the standard deviation by the mean value of the distribution to 

which it belongs. The scaled standard deviation provides an estimate of the precision for the modal 

parameter estimate through the relative error. Figure 6 visualizes the resulting probability density 
functions for the vibration frequency estimate of 10 repeated experiments. A visual comparison of the 

statistics for the individual experiments finds that for each vibration mode the probability density 

functions have very similar tendencies. The similarity of the statistical parameters indicates that the 

tendency found in one experiment provide statistical parameters that can describe the uncertainty of the 

estimated modal parameters from that experiment. The distribution for the mean estimates of the 

repeated experiments MACXP shows a much smaller scaled standard error which indicates that the 

differences in the estimations by repeating the experiment are smaller than the differences between the 

estimates obtained from changing the method or acquisition parameters used. The MACXP distributions 

indicate that the repeatability of the estimated vibration frequency is lowest for vibration mode 1 while 
the repeatability is similar for vibration modes 2 and 3. This is not exactly the conclusion that would be 

derived from evaluating the distribution for one experiment due to a higher uncertainty in the methods 

and data acquisition parameters used for vibration mode 3. It is observed that the uncertainty of the 

damping coefficient is substantially higher than for the estimations of the eigenfrequency. 

 

Figure 6. Comparison of probability density functions from MACXP weighting of modal parameter estimates for 

vibration modes 1 through 3 plotted with the MACXP weighting of the resulting mean values. 

Distributions for the modal parameter estimates from the EMA are calculated with the weighting 

directly applied to the resulting estimations provided by the PolyMAX and Time MDOF algorithms 

since only two estimations are available for each repeated experiment. For the OMA, different 

weighting methods i.e., unitary (Mean), MAC, MACX, MACXP, and MACXPnD, are used to generate an 
estimation of the modal parameters for each repeated experiment. Distributions for the estimations from 

the repeated experiments are then calculated using the same weighting method as the one used in each 

repeated experiment. The influence on the distributions from the weighting methods is thereby 

analysed. Figure 7 illustrates that the use of a weighting method for statistical parameters reduces the 
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uncertainties in the resulting estimation from an experiment when there are large differences in 

estimated modal parameters that are assumed to be similar. As the differences between the estimated 
modal parameters are largest for vibration modes 1 and 3 using the OMA methods, these are also 

observed to carry the greatest alteration of the resulting estimation by the weighting methods. 

Additionally, the alterations are observed to tend towards the estimates obtained from the EMA 

estimations. This can be explained by the tendency that the accuracy of the estimates from EMA in 

general is better than for the OMA methods tested in this paper. For vibration mode 1, it is indicated by 
the scaled standard deviation of the estimated vibration frequency that the uncertainties are substantially 

larger for the OMA methods than for the EMA methods and that the resulting estimations also differ. 

Therefore, the estimation accuracy must be assumed higher for the EMA results than for the OMA 

results when evaluating the vibration frequency for mode 1. On the other hand, the scaled standard 

deviation of the estimated damping factor for vibration mode 1 indicates that the accuracy is higher for 

the OMA methods than for the EMA methods. If a clamping configuration of an aluminium beam is 
appropriate, the damping factor will primarily consist of the damping factor for the material. In [14] 

(6.2.1), the clamping configuration of a steel beam is discussed. Here, it is indicated that the tests should 

present a damping coefficient of approximately 0.001 to 0.002. Following a Wicket plot in [14] (Fig. 

X2.1), it is presented that the damping coefficient estimate increases slightly if a stiff material is 

replaced by a slightly less stiff material. Since the steel is a stiff material and the stiffness of aluminium 
is slightly lower compared to that of steel, the damping coefficient is expected to be higher but still in 

the same order of magnitude. This indicates that the accuracy of the EMA methods is much higher than 

for the OMA methods. Therefore, an upper limit for the scaled standard deviation that provide a useful 

interpretation of the accuracy might exist. 

 
Figure 7. Comparison of probability density functions from different weightings used on modal parameter 

estimates from repeated experiments for modes 1 through 3. 

The indications that the statistical tendencies found in one experiment can be used to describe the 

general uncertainties in a repeated set of experiments and that the MACXP weighting reduces the 

uncertainty are used to test the influence on the modal parameter estimates by changes to the boundary 

conditions for the cantilever beam. Figure 8 presents the general tendency that when the estimated 

vibration frequency is reduced the uncertainty of the estimation of the vibration frequency increases. 
The tendency is clearest for vibration modes 2 and 3 for which the uncertainty is visibly the smallest. 

The higher uncertainty for smaller eigenfrequency could be related to the scale of the acceleration 

signals. When the vibration frequency is lowered, the relative contribution of the modal mass for that 

vibration mode is increased which in turn will provide lower accelerations from the same disturbance 

force. This can harm the quality of the signal. However, the uncertainties indicate that a difference of 
the vibration frequency is visible in the data as a result of changing boundary conditions. The estimates 

of the damping factor have high uncertainties for all modes. This indicates that the accuracy of the 
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damping factor from the estimations is that low that changes because of changing boundary conditions 

cannot be deemed significant. 

 

Figure 8. Comparison of probability density functions from MACXP weighting of modal parameter estimates 

for vibration modes 1 through 3 under different clamping conditions. 

When estimations from OMA are tested, often a single method is used. It is therefore tested what the 

accuracy of the modal parameter estimates is compared to the estimate from all OMA methods when 
the mean value from the EMA methods is used as benchmark. The estimates from each method are 

individually weighted using the MACXP. From the experimental tests and the statistical analysis, the 

overall accuracy of the vibration frequency is 0.67 % for FDD, 1.00 % for HTM, 1.07 % for BR, 1.16 

% for SSI, and 0.75 % for a combination of the methods. The damping ratio has the overall accuracy of 

476 % for FDD, 591 % for HTM, 263 % for BR, 300 % for SSI, and 456 % combining the methods. A 

MACX comparison of the mode shapes yields 0.995 for FDD, 0.993 for HTM, 0.994 for BR, 0.995 for 

SSI, and 0.996 for a combination of all methods. It is observed that the combined estimate using 

information from all tested methods is enhanced by the methods which have more accurate predictions 

for each modal parameter. As indicated by figure 5, the evaluation of the overall accuracy presents very 
accurate estimates of the vibration frequency and mode shapes for both the individual and combined 

OMA methods, whereas the damping estimate is far from accurate for a cantilever beam. Table 2 

presents comparisons of estimates for vibration mode 1 of one experiment with clamping configuration 

a). 

Table 2. Comparison of estimates from different OMA methods to the overall OMA and EMA estimates for 

vibration mode 1. 𝐀𝐜𝐜𝟏is left out since this is used as reference for comparing the mode shapes. 

Screw torque 30 NM 

Boundary Steel vs. aluminium 

Methods 𝜔𝑑 [Hz] 𝜁 [%] Acc2 Acc3 Acc4 Acc5 Acc6 Acc7 

FDD MACXP 15.01 2.798 0.07-0.00i 0.23-0.01i 0.34+0.00i 0.09-0.00i 0.25-0.01i 0.33+0.00i 

HTM MACXP 14.95 2.151 0.07+0.00i 0.19+0.05i 0.24+0.09i 0.08+0.01i 0.19+0.06i 0.23+0.09i 

BR MACXP 14.84 1.356 0.09+0.00i 0.24+0.01i 0.33-0.00i 0.10-0.00i 0.24+0.00i 0.34-0.01i 

SSI MACXP 14.92 1.787 0.07-0.00i 0.23-0.00i 0.34-0.01i 0.09-0.00i 0.25+0.00i 0.33-0.01i 

OMA MACXP 14.96 2.271 0.07-0.00i 0.22+0.01i 0.30+0.03i 0.09+0.00i 0.23+0.02i 0.30+0.03i 

PolyMAX  14.64 0.236 0.12+0.10i 0.27+0.06i 0.30-0.06i 0.10+0.01i 0.22-0.08i 0.23-0.23i 

Time MDOF 14.63 0.257 0.11+0.12i 0.27+0.10i 0.33-0.01i 0.10+0.02i 0.25-0.05i 0.29-0.20i 
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5. CONCLUSIONS 

A method able to weigh modal parameter estimates to provide statistical parameters that indicate its 

accuracy has been tested for a cantilever beam with changing clamping configurations. The method 

compares modal parameter estimates to reduce the influence from differing estimates to achieve an 

increased accuracy which is demonstrated in a repeated experiment for a single clamping configuration. 

The indicated uncertainty from the repeated experiments is found to be equivalently described by the 

uncertainty explained from a single experiment and consistent for each repetition of the experiment. 
The uncertainties are helpful when evaluating if an accurate estimation of the modal parameters is 

obtained. 

The evaluation of the method indicates that the accuracy of modal estimates from the identification 
methods used in this work is affected by the clamping configuration. Structural dynamical properties 

being the stiffness, inertia, or dissipation impact the signal propagation through the structure in question. 

The method indicates for a specific mode that when the vibration frequency of a mode is reduced, the 

accuracy of the estimated vibration frequency is also reduced. The signal propagation from the same 

input is lowered when the modal stiffness is reduced and the modal mass is increased. 

The accuracy of modal parameter estimates is found to benefit from information of multiple OMA 

methods compared to using a modal parameter estimate from one methodology only. The evaluation of 

the accuracy also presents far more accurate estimates of the vibration frequency and mode shapes 

compared to that of the damping ratio when a cantilever beam is examined. 

In a stabilization diagram, the method can be used to weigh poles that possibly describe a vibration 

mode of interest. The weighting of a compared set of modal parameter estimates can thereby both 
indicate the uncertainty of the resulting modal parameter estimate and possibly provide a more accurate 

estimate. The weighting is also suitable for a validation criterion in an automated parameter selection 

for instance as to define the Euclidian distance in a hierarchical cluster algorithm. 
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ABSTRACT 

Classical input-output experimental modal analysis was focused on solving machine vibration 

problems. However, the improvement of techniques for analysis evolved to subsequent identification 

of modal parameters of structures under operational conditions, enabling the update of finite element 

models and structural modification to improve reliability, allowing a more integrated physical and 

mathematical approach. Meanwhile, large-scale industry applicability has led to the need for more 

efficient, robust, and lower-cost analysis. To meet new demands, rapid data analysis and verification of 

modal properties for health monitoring have become a powerful tool in the industry. The comprehensive 

use of rotating machinery, with notable application in wind generators, but also in more common 

components such as compressors, pumps, and turbines, requires efficient and fast ways of applying 

OMA. In this way, the objective of the paper is to propose the use of clustering techniques already 

known, such as k-means and hierarchical clustering, with the identification of relevant parameters 

extracted from the stabilization diagram of the stochastic subspaces identification (SSI) of experimental 

signals, treated to remove outliers using random forests for rapid identification of the modal parameters. 

Data from a test rig rotor with hydrodynamic bearings were used to evaluate the algorithm. The results 

show that modal identification parameters based on damping and vibration modes, without removing 

the influence of harmonics tend to be very biased and show a large standard deviation for the analysis 

of the extracted frequency, allowing only an indication of the mode location region in the spectrum. 

Keywords: multi-stage clustering, automatic operational modal analysis, time-domain techniques. 

1. INTRODUCTION 

The modal study of equipment and systems has its foundations well discussed and documented, as 

shown in (Silva & Maia, 1999). Classical methods of modal analysis, in general, consist of analyzing 
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the system through a transfer function, i.e., establishing a relationship between inputs and outputs, 

describing the system as a filter, and defining its parameters, as natural frequencies, damping factors, 

and vibration modes. However, a clear limitation of this approach is that necessarily all inputs and 

outputs must be known, or better said, the methods are deterministic. In practice, systems that cannot 

be correctly isolated present great difficulty to be tested by the methods known as experimental modal 

analysis (EMA) (Brincker & Ventura, 2015). 

For this reason, different approaches from the deterministic method were proposed and the initial focus 

was on systems that could not have their behavior completely detached from the environment. The 

excitations to which the equipment is subjected in operation can have different sources and often do not 

have a defined behavior, making them difficult (or even impossible) to be measured and reproduced. 

One of the pioneering studies was done in (CLARKSON & MERCER, 1965), for aerospace application, 

but it was with the end of the 1990s that there was a rapid popularization, mainly through the NeXT 

(James et al., 1995) study, which made it possible for EMA identification methods to be extended to 

Operational Modal Analysis (OMA) as well. Thus, OMA is a method known as output-only, since the 

modal parameters are estimated only from the dynamic response of the structure, without necessarily 

knowing which excitation the system is subjected to. Using OMA, the modal parameters reflect the 

operating behavior of the structure, with all components assembled. For this reason, it has been widely 

applied in aerospace (Goursat et al., 2011), automotive (Guillaume et al., 2003), civil engineering 

(Rainieri & Fabbrocino, 2010), and others. 

The requirement of a less controlled environment for modal analysis led to new applications being 

achieved. For example, nowadays, in addition to improving the accuracy of mathematical models, the 

application of machine health monitoring has gained strength. With this most popular application, the 

method capabilities have expanded, ranging from signal analysis techniques for identifying faults in 

rolling bearings, such as (Randall & Antoni, 2011), to Bayesian statistical methods (Brownjohn et al., 

2019). Notably, several recent works have brought attention to emerging methods such as (Poddar & 

Shunmugam, 2019; Wu et al., 2020), advancing the study of SHM by combining OMA with automated 

algorithms for obtaining the modal parameters. 

As is known, the study of rotating machines also has its separate chapter in several methods, mainly 

due to the dynamic characteristics which these machines present in operation. References such as 

(Brandt & Linderholt, 2012; R. Liu et al., 2018), already demonstrated the challenge of applying 

identification techniques and OMA in rotating machines and the challenge of automatic identification 

of physical modes. Aspects such as gyroscopic effects, critical speeds, frequencies proportional to the 

shaft’s speed (harmonics), modes with large damping, foundation modes, and others, that involve the 

behavior of rotating machines tend to require adequate treatment to have an accurate identification of 

modes of interest. 

As a result, both time and frequency domain techniques can be explored and analyzed in rotating 

machinery to provide as much information as possible. In OMA, the classical FDD (Brincker et al., 

2001) technique based on spectral density is widely used as a preliminary signal reference. The 

stochastic subspace method, a reference for analyzing the system in the time domain, is applied in 

several works both in its covariance-driven (Brownjohn et al., 2010) and data-driven (Peeters & De 

Roeck, 1999) variants, due to its mathematical formulation and the ease of extracting system 

parameters, which later are used as features in several automatic identification algorithms (He et al., 

2021). 

Therefore, the objective of this work is to explore clustering techniques combined with statistical data 

to make a systematic extraction of modal parameters analyzing only the response, as fundamentals 

demonstrated in (Neu et al., 2017) for a highly damping composite cantilever beam in different signal 

to noise ratio conditions, but here exploring the proposed multi clustering technique and its parameters 

for a rotating machine supported by hydrodynamic bearings, and including a substantial step for outlier 

removal based on isolation forests (F. T. Liu et al., 2008), a promising method that tends to improve the 

values extracted from the stabilization diagram. 
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2. METHODOLOGY 

In this section, a quick contextualization of the clustering methods and the adapted algorithm with the 

outlier analysis will be described. For a reference on OMA identification methods, it is suggested to 

consult references such as (Magalhães & Cunha, 2011; Storti, Carrer, et al., 2021). 

2.1. Clustering Techniques 

Machine learning is the ability of artificial intelligence to acquire knowledge by extracting patterns 

from raw data (Goodfellow et al., 2016), and unsupervised learning is one of machine learning’s 

divisions. The data input space is structured in such a way that a certain pattern occurs more often than 

others and the aim of unsupervised learning is to find these regularities (Ethem Alpaydin, 2014). This 

task can be accomplished by clustering techniques, whose goal, considering a set of 𝑁 unlabeled 𝐷-

dimensional samples 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝑁}, is to group similar samples forming clusters. 

K-means is one of the most popular clustering algorithms and is explained here based on (Bishop, 2006). 

Its goal is to separate a set of samples 𝑿 into 𝐾 clusters, assuming the value of 𝐾 is given. One can see 

the cluster as a group of samples whose distances from each other are small compared to the distances 

with samples from other clusters, which is formalized by introducing a set of 𝐷-dimensional vectors 

𝝁𝑘, where 𝑘 = 1, … , 𝐾, being 𝝁𝑘 a prototype associated with the 𝑘th cluster and representing its center, 

so that the quadratic sum of the distances of each sample to its nearest 𝝁𝑘 vector is minimal.  

For each sample 𝒙𝑛, a set of binary indicator variables 𝑟𝑛𝑘 ∈ {0,1} is introduced describing to which of 

the 𝐾 clusters the sample 𝒙𝑛 was assigned, so that if a sample 𝒙𝑛 is assigned to cluster 𝑘 then 𝑟𝑛𝑘 = 1 

and 𝑟𝑛𝑗 = 0 ∀ 𝑗 ≠ 𝑘. Therefore, it is possible to define an objective function, given by eq. (1), which 

represents the quadratic sum of the distances from each sample to the prototype 𝝁𝑘 assigned to it. 

𝐽 = ∑ ∑ 𝑟𝑛𝑘‖𝒙𝑛 − 𝝁𝑘‖2

𝐾

𝑘=1

𝑁

𝑛=1

  (1) 

The goal is to find values for 𝑟𝑛𝑘 and 𝝁𝑘 to minimize 𝐽, which can be accomplished through an iterative 

method. (Bishop, 2006) highlights that the convergence of the algorithm is guaranteed because at each 

iteration the value of the objective function is reduced, but it can converge to a local minimum instead 

of a global minimum. (Géron, 2017) points out that the K-means++ algorithm was proposed by 

introducing a smarter initialization step that tends to initialize centroids far from each other and claims 

that this improvement made the K-means algorithm far less likely to converge to a suboptimal solution. 

Hierarchical clustering is another popular clustering algorithm and is solely based on similarity 

measures between samples. It can be divided into agglomerative and divisive. According to (Ethem 

Alpaydin, 2014), the first one starts with the number of clusters equal to the number of samples and 

continues merging similar clusters into larger clusters until there is only one cluster, while the second 

follows the opposite direction. To obtain the clusters from the hierarchical clustering algorithm, one can 

provide to the method the desired number of clusters or a threshold for the similarity measure, so that 

when the number of clusters or the specified threshold is reached, the hierarchical clustering returns the 

clusters to the user, described as sample sets.  

2.2. Multi-stage clustering algorithm 

The method applied in this paper is based on (Neu et al., 2017), making use of successive clustering 

techniques (respectively k-means and hierarchical clustering) together with a prior selection of 

eigenvalues output from SSI-data driven, chosen using hard validation criteria, to identify the 

predominant modes in the analysis of a rotating machine data set. The algorithm can be described as 

shown in Figure 1.  
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Figure 1. Block diagram showing the algorithm steps. 

 

In this algorithm, initially, the eigenvalues extracted from the SSI algorithm are analyzed and those that 

have a positive imaginary part, a positive real part, and that do not have conjugate complex are removed 

in what is called Hard Validation Criteria (HVC). Then, a matrix of the distance between successive 

order modes is calculated using the following expression (2): 

𝑑𝑖,𝑗 = 𝑑𝜆𝑖,𝑗 =
|𝜆𝑖 − 𝜆𝑗|

max(|𝜆𝑖|, |𝜆𝑗|)
 

(2) 

where 𝑖 is the mode of one order and 𝑗 each of the modes of a successive order of the stabilization 

diagram. This metric was adapted from (Neu et al., 2017) and from other researches, such as (de 

Almeida Cardoso et al., 2018; Reynders et al., 2012), since in experimental data from rotating machines, 
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the repeatability of successive modes tends to have poor repeatability when considering the value of the 

Modal Assurance Criterion (MAC), generated mainly due to the complex modes of this type of system. 

It can be shown that expression (2), together with the other features as applied in (Neu et al., 2017) have 

a distribution that does not favor the clustering algorithms. Therefore, the feature distributions are 

transformed using Box and Cox transform (Box & Cox, 1964). Then, the treatment of outliers by the 

isolation forests method will be shown and how its application facilitates the final average mode values 

obtained in the automatic identification of rotor response signals. The process continues by applying 

the k-means clustering labels and removing from the later steps the modes that were classified as 

certainly mathematical. A new distance matrix is then generated from the labels obtained and clusters 

are estimated based on the 92nd percentile of the distribution, which will be applied as a threshold for 

the hierarchical clustering, in the sequence.  

Finally, considering the clusters generated in this last method, only those that have a significant amount 

of representation in the stabilization diagram are selected as modes of interest, namely, those that are 

repeated in great number and with stable features. This value is considered 2/3 of the largest cluster. 

3. EXPERIMENTAL DATA 

The test rig configuration is shown in Figure 2, and detailed information is also presented in (Storti, da 

Silva Tuckmantel, et al., 2021). It consists of a steel shaft, with a length of 620 mm and a diameter of 

15 mm, connected to an electrical motor by a flexible coupling. A frequency inverter, connected to the 

data acquisition computer drives the motor. The shaft is supported by two identical hydrodynamic 

journal bearings, with 31 mm of diameter, 18 mm of axial length, and 90 μm of radial clearance. 

Bearings are lubricated with oil through a metering pump. Bearings 1 and 2 are placed at, 

approximately, 175 mm and 585 mm from the coupling, respectively. A steel disk with a diameter of 

120 mm and length of 20 mm is placed, approximately, at 120 mm after the first bearing.  

A magnetic actuator is used for applying an external force to the shaft in the first test, as a Gaussian 

white noise input. Hall-sensors, located at the coil poles, measure the produced magnetic field to control 

the force levels. It is worth mentioning that the actuator is experimentally calibrated for the assembled 

system, that is, a linear relationship is found between the ‘control’ electromagnetic field and the 

experimental forces generated in the system, measured through the load cells present in each one of the 

bearings. The measurements were obtained through accelerometers positioned on the bearings' shafts, 

measured separately in the vertical and horizontal direction of the test rig (z and y axes of Figure 2). 

 

 

Figure 2. Test rig configuration. 
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4. RESULTS 

As mentioned earlier, the algorithm was applied to data from four accelerometers for the rotor operating 

with a constant shaft speed of 75 Hz. The extracted acceleration values can be seen in Figure 3. 

 

Figure 3. Accelerometer data is used in the results section.  

 

From the data obtained, with processing to remove the mean of each one of the series, the stabilization 

diagram can be obtained from the SSI data-driven algorithm (Figure 4). In addition, spectral densities 

are plotted in the background of the graph to aid in the interpretation of results. The maximum number 

of eigenvalues to be estimated via SSI was fixed at 100 after a successive analysis over different model 

orders since in the analyzed frequency range, this parameter proved to be sufficient to indicate the 

repeatability of the modes of interest. 

 

 

Figure 4. SSI data plot using conventional analysis. 

 

In this conventional analysis, stabilization limits are previously defined, generally considering the 

frequency deviation between successive modes, the MAC, and damping coefficients to classify the 

modes as stable. However, this analysis is very particular, depending mainly on user knowledge and 
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system characteristics. As can be seen in Figure 4, this analysis is possible and relatively simple, 

however, when a large amount of data need to be tested with almost no prior knowledge, or when the 

monitoring of modal factors is necessary to be done constantly, it is extremely valuable to have an 

algorithm able to interpret the information from the stabilization diagram in a similar way to the user 

and provide reliable results from the automatically extracted modal parameters. 

In this way, clustering methods were added as described in the previous section. The first step is 

elimination by HVC, which results in the elimination of modes that are physically meaningless, i.e., 

mathematical modes that cannot represent actual physical modes of the rotor. Then, after calculating 

the distances between nearest neighbors’ modes, the Box-Cox transformation is performed, resulting in 

a matrix of attributes that are evaluated by the k-means. For the problem investigated, there are only 

two clusters to be formed in this step: Probably Physical and Certainly Mathematical. The distribution 

of attributes according to the assigned labels and the correlation between the attributes can be analyzed 

in Figure 5. The correlation values, shown in the upper right part of Figure 5, show that the contribution 

of the distance from damping from neighbors’ modes has a low correlation with the label assigned by 

k-means, which shows that damping values tend to have a greater dispersion and make the analysis of 

automatic identification algorithms difficult. 

 

 

Figure 5. Features distribution based on labels after k-means clustering. 

 

The removal of unexpected values, represented here as outliers, plays a key role in determining the final 

modes. Two conditions will be tested to illustrate this feature: the first one without any analysis by the 

isolation forests algorithm, and a second applying outlier removal considering 20 ensemble estimators. 

No other parameters are modified between these cases. The value is taken arbitrarily as respectively 
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1/10 of the number of modes grouped in the largest cluster of the first condition, however, the authors 

consider that a deeper analysis of this value still needs to be done. The results are presented respectively 

in Figure 6 and Figure 7. 

 

 

Figure 6. Automatic identification of physical modes without isolation forests. 

 

Figure 7. Automatic identification of physical modes with isolation forests and using an ensemble of 20 

estimators. 

 

The result obtained in the comparison of Figure 6 and Figure 7 can be quite challenging in the first 

analysis: visually, the algorithm seems to have decreased the precision of the final clusters. However, 

this is not what happens: if the mean frequency and standard deviation values for the first rotor mode 

are compared (the most prominent peak in frequency, determined in (Storti, da Silva Tuckmantel, et al., 

2021) as 52.3 Hz through a numerical model), see Table 1, it is possible to notice that the precision for 

this mode has increased. Another fundamental observation of the results is that the method was able to 

remove the frequencies proportional to the rotational speed of the shaft (75 Hz, 150 Hz, and 225Hz), 

which are undesirable in the modal analysis of rotating machines, as these can be easily mistaken with 

rotor or foundation modes, for example, making it difficult to visualize the real modes of the system. 

Generally, harmonic removal must be based on some deterministic method, such as extracting kurtosis 

152



 

 

values (Brincker et al., 2000) across the spectrum or by orthogonal projections (Gres et al., 2019), which 

in practice can make the process numerically more expensive and make an automatic identification of 

the system modes even impossible, especially when in the presence of different signal to noise ratio 

conditions. Harmonics can be interpreted as an outlier when compared to physical modes for two very 

clear reasons: they tend to have a practically zero deviation (when the rotor is operated at constant 

rotation) and approximately zero damping, characteristics not observed in physical modes. 

 

Table 1. Mean natural frequency and standard deviation for the first rotor mode automatically identified by the 

multi-stage clustering method. 

 Mean Frequency [Hz] Standard Deviation [Hz] 

Case 1 wihout Isolation Forests 56.00 4.89 

Case 2 with Isolation Forests 55.74 3.54 
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ABSTRACT

This paper presents one possible solution for the identification of a nonlinear dynamic system with unknown
linear model parameters and an unknown nonlinear function in the equation of motion. The task is to recover
internal states of the nonlinear system (displacement and velocity), the parameters of the linear component
of the system and the functional form of the nonlinearity. From only the output data and in the presence of
measurement noise, the system is identified in a Bayesian manner. The identification is performed within a
Gaussian process latent force model framework, in three stages. The first is to make a biased linear estimate of
the system; the second to recover the displacement, velocity and latent restoring force; finally this recovered
latent force is fit. The fitting of the latent restoring force is also achieved with a Gaussian process regression
model which allows for the noise free restoring force function to be recovered, which eliminates the influence
of the unmeasured input to the system under the assumption that the input is broadband. It is shown how this
framework effectively recovers accurate estimates of the displacement and velocity of the system as well as
very good fits over the nonlinear restoring force which defines the equations of motion.

Key words: Bayesian, Gaussian Process, Output-only, Nonlinear, System Identification

156



1 INTRODUCTION

The demand placed on modelling and identification of engineering structures has only increased over time
and along with it the complexity of the structures being modelled. The prevalence of significant nonlinear
behaviour in engineered dynamic systems has increased, as has the desire to understand and model that
nonlinearity. Potential sources of nonlinearity, such as large deflections, non-linear-elastic materials and
contact or friction between components, must now be understood if a practitioner seeks to construct an
accurate model of the system.

The rise in demand for accurate models which replicate the behaviour of physical systems, the so-called
digital twin, alongside increased availability of operational data leads engineers to ask if it is possible to
model nonlinear dynamic effects. As in the linear case, when access to measurements the inputs/excitation
given to the dynamic system are available, the identification is greatly simplified — although still a significant
challenge. Moving to the output-only or operational case, the task of identification from data greatly increases
in difficulty.

When the inputs are available a great deal of work has been done in the literature, for example, see the review
papers Kerschen et al. [5] or more recently Noël and Kerschen [8]. A wide variety of methods in both the time
and frequency domain have been explored with varying levels of success. In the output-only case the number
of works in the literature reduce. However, work is still being carried out with promising results. For example,
Friis et al. [2] propose a methodology based on determining an equivalent linear system. Vesterholm et al.
[14] propose a technique for detecting nonlinearity based on a random decrement method combined with
principal component analysis. This work was compared to previous attempts by Macıas et al. [6] where again
principal component analysis is used in combination with a finite element model for detection of nonlinear
dynamic behaviour.

In this work, a time domain approach is also taken to detect and subsequently identify the effect of a
nonlinearity in a system where only output acceleration measurements are available. The developed method
will be based upon results from a Gaussian process (GP) Latent Force Model (LFM), an emerging framework
for structural identification based on original work in the computer science community [1, 3].

In [10] it is shown how for a linear system under narrowband loading (which coincides with the resonant
modes of the system) it is possible to perform joint input-state-parameter identification of the system through
the GPLFM framework. Shortly before this, [7] independently presented work on the use of the GPLFM
for input estimation of a linear dynamic system, specifically for the learning of traffic loading on a structure
where the modal properties were known a priori. Since these two publications, work on the application of
GPLFM models has shown a great deal of promise in the structural dynamics community, notably Petersen
et al. [9] demonstrate the use of this model structure for inferring wind loads on a long-span suspension
bridge. On the theoretical side, development has also continued with the work being extended for input/load
estimation of known nonlinear systems [12] and for identification of nonlinear systems with known inputs
[11] (the experimental modal analysis case). This current paper will demonstrate how, under the assumptions
of broadband excitation, a nonlinear system may be detected and subsequently identified from only its output
measurements within the same framework — the operational modal analysis case.

2 GAUSSIAN PROCESS LATENT FORCE MODELS

Before introducing the GPLFM, it is worth briefly reviewing the GP for readers unfamiliar with the topic, this
tool will also be used in the fitting of the unknown restoring force surface. The GP is a Bayesian machine
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learning tool which is predominantly used to solve regression problems, a good introductory text on the
topic which goes beyond the information shown here is [15]. There are a number of ways to develop the
GP as a tool for learning functional relationships between data, perhaps the most intuitive is to describe the
GP as a “probability distribution over functions”. This means that a sample from a GP, rather than being a
single number or a vector of numbers is instead one possible function defined at any input on the real line. In
practice, it is not possible to assess the GP at every point on this function, however, since the GP can be seen
as an infinite collection of jointly Gaussian distributed random variables, it is possible to assess any finite
subset of those exactly such that the function can be evaluated at any point of interest.

Moving towards a more substantial definition, imagine a set of training data D = {xi, yi}Ni=1 where xi is the
ith training input (vector) and yi the ith training target (scalar) such that,

yi = f(xi) + ε, ε ∼ N
(
0 , σ2n

)
for some unknown function f(·) and additive zero-mean Gaussian measurement noise εwith variance σ2n. Two
important mathematical concepts are used to develop the GP, the first is the kernel trick, without exhaustive
detail, this allows the covariance between any two function values f(xi) and f(xj) to be expressed directly
through a covariance kernel/function k (xi,xj). Many choices exist and the reader is referred to [15] for
details, importantly this covariance kernel is a function of only the inputs x to the function so may be assessed
at new, as yet unseen, values for testing x?. Secondly, given that every point in the function f (x) is jointly
Gaussian distributed, one can construct the joint distribution between the training data D and the test data
D? = {x?

i , y
?
i }, remembering that the values of y?i are unknown. Collecting all the training inputs and outputs

into a matrix X and vector y, then similarly for the testing data X? and vector y?,

[
y
y?

]
∼ N

([
m (X)
m (X?)

]
,

[
K(X,X) + σ2nI K(X,X?)
K(X?,X) K(X?,X?) + σ2nI

])
(1)

where m(·) is the mean function (often assumed to be zero, as is done in this work) and K(X,X) is the
covariance matrix between all the pairs of inputs and equivalent for the testing data. By the well known
identities for conditioning in multivariate Gaussian distributions a predictive distribution can be established
over y? conditioned on D,

y? ∼ N (E [y?] , V [y?]) , (2a)

E [y?] = m(X?) +K(X?,X)
(
K(X,X) + σ2nI

)−1
y, (2b)

V [y?] = K(X?,X?) +K(X?,X)
(
K(X,X) + σ2nI

)−1
K(X,X?) + σ2nI. (2c)

In possession of Eq. (2), it is possible to predict the distribution over possible unknown y? values at any new
set of inputs X?. Note, in order to develop the model fully, there are a handful of hyperparameters which
must be determined, usually (as is the case in this work) this is done by minimising the negative log marginal
likelihood of the process (see [15] for details). This model has proven both useful and flexible in a range of
applications but is limited by the fact that it learns a static map from x to y.

One approach to overcome this limitation was presented in [1] where the authors imagined a set of data where
the generating process was given by some ordinary differential equation (ODE) which was itself driven by a
GP. In other words, choosing a second order system, a process which could be written as,

ÿi + αẏi + βyi = U(t), U(t) ∼ GP
(
0, k(x,x′)

)
(3)
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where overdot is used to denote a derivative with respect to time, which those in the structural dynamics
community will agree is a far more expressive model. The above model, shown in Eq. (3) is the GPLFM.

One major challenge when using GP models as a prediction tool is the computational complexity, which is
O(N3) for N training data points. This difficulty continues in the GPLFM. Owing to developments shown in
[4], work in [3] shows how the GP component of Eq. (3) can can be rewritten as a linear Gaussian probabilistic
state-space model. Once in this new form, it can be shown that the system is solvable with a Kalman filter and
Rauch-Tung-Striebel (RTS) smoother [13] which reduces the computational complexity to O(N). Within this
framework the number of data points is determined by the length of the time series which is being considered,
therefore, N ≡ T if a signal of length T points in time are observed. Under this framework it is also possible
to extend the model to sets of differential equations so multiple time series can be inferred at once. For
example, multiple unknown inputs Ud(t) acting on different masses/modes from multiple acceleration sensors
can be inferred if d indexes which force is being inferred [7, 9, 12].

This model form has been previously shown for joint input-state [7, 9] and joint input-state-parameter learning
of linear structural dynamic systems. In these works, the unknown forces (potentially narrowband) which
drive the linear systems to induce a response are inferred.

2.1 GPLFM for Nonlinear Systems

When considering an extension to nonlinear systems, the obvious line of approach is to consider what may
happen when the left-hand side of the ODE in Eq. (3) is no longer linear. In other words a more general model
where

ÿi + f(yi, ẏi) = U(t), U(t) ∼ GP
(
0, k(x,x′)

)
(4)

if f(yi, ẏi) is some nonlinear function in the displacement and the velocity. Under this setup, it is possible to
recover unmeasured inputs to a nonlinear dynamic system, see [12] for details. However, there are a number
of significant drawbacks. Firstly, [12] assumes that the form of the nonlinearity (f(yi, ẏi)) is known a priori
and its parameters are available to the modeller, such that just the forces are unknown.

Secondly, the equivalent state-space model of the the system is now nonlinear despite the component
representing the GP remaining linear because of the nonlinearity in the ODE itself. To address this challenge,
one must turn to nonlinear inference methods. Instead of the Kalman filter and RTS smoother giving the
solution to the GPLFM, an alternative nonlinear filter and smoother must be used, e.g. the Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF) or particle filter (PF) [13]. The user must then trade off
between computational load in the case of the PF and potentially larger approximation errors in the case of
the EKF/UKF.

However, the approach described above cannot be taken unless some prior knowledge can be incorporated
regarding either f(yi, ẏi) or U(t) since there is an inherent non-identifiability between the contribution of
the unknown nonlinear restoring force f(yi, ẏi) and the unknown loading U(t). It will be shown that, if the
practitioner were interested in learning the unknown restoring force, f(yi, ẏi), a similar approach can still
be taken which has an additional benefit of the state-space model remaining linear. In [11] it is suggested
that, if the inputs U(t) were known then one could imagine a situation where the unknown contribution of the
missing nonlinear terms is modelled as some missing external input in time. In other words

ÿi + 2ζωnẏi + ω2
nyi +R(t) = U(t), R(t) ∼ GP

(
0, k(t, t′)

)
(5)

for some natural frequency ωn and damping ratio ζ and assuming R(t) ≈ f(yi, ẏi)− 2ζωnẏi + ω2
nyi. One

important detail to notice in the model construction shown above is that the nonlinear component R(t) is now
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modelled as a function of time t rather than the states y and ẏ. This change is what allows the latent force
approach to be adopted but necessitates a further identification step after the smoother to infer f(y, ẏ). If
U(t) is known, i.e. the experimental modal analysis case, then the GPLFM can be used to infer the “missing”
restoring force R(t) (and linear parameters) again using the Kalman filter and RTS smoother. This gives
a computationally efficient and powerful framework for recovering the nonlinear contribution to the ODE
which, in a second stage, is then used to infer the nonlinearity itself.

3 OUTPUT-ONLY NONLINEAR SYSTEM IDENTIFICATION

Now attention can turn to the output-only case, i.e. when U(t) is unmeasured in Eq. (5). As previously
mentioned in the case where the loading U(t) is unmeasured and could be any possible function it will prove
very challenging to perform some identification as there can be an infinity of solutions where R(t) + U(t)
equals a constant. In other words, the contribution to the response of the system from the nonlinear dynamics
and from the unknown input cannot be separated without further insight. This (as yet) unsolvable model could
be considered to be written as,

ÿi + 2ζωnẏi + ω2
nyi +R(t) = U(t), R(t) ∼ GP

(
0, kr(t, t

′)
)
, U(t) ∼ GP

(
0, ku(t, t

′)
)

(6)

where ku(t, t′) is the kernel of the input process U(t) and kr(t, t′) of the unknown restoring force R(t).

However, in this work, a case is imagined where, under some assumptions, it will be possible to recover a
good estimation of f(yi, ẏi) from only response measurements. As is commonplace in many operation modal
analysis procedures, it will be assumed that U(t) is broadband and can be imagined to be generated by some
white noise process. It can be shown that a GP can be constructed which generates functions which are simply
realisations of white noise by choosing a particular form for the covariance kernel. Another useful property of
the GP is that the sum of two GPs is available in closed form, such that,

U(t) +R(t) ∼ GP(0, ku(t, t′) + kr(t, t
′)) (7)

If the kernel ku(t, t′) is chosen to be a white noise process, i.e. ku(t, t′) = σ2f δ(t− t′) with δ being the delta
function and σ2f the variance of the white noise, this imposes the prior belief that U(t) is simply white noise,
i.e. the contribution of the mean of U(t) to the expected value of U(t) +R(t) will be zero.

Under this assumption it can be shown that the expectation of U(t) +R(t) will be equal to the expectation
of only R(t), i.e. only the contribution of the nonlinear terms in the ODE. Therefore, if the assumption that
U(t) is white noise holds, then the nonlinearity in the system can be recovered by inspecting the relationship
between the estimated displacement and velocity, and the expectation of the inferred restoring force R(t).
Owing to constraints on the space available in this conference paper the details of constructing the state-space
model which allows this inference to take place are omitted. The constructed state-space model solves a
model in the now familiar GPLFM form,

ÿi + 2ζωnẏi + ω2
nyi = R̂(t), R̂(t) ∼ GP

(
0, kr(t, t

′) + ku(t, t
′)
)

(8)

with ku(t, t′) set as a white noise kernel.

Inference of the model shown in Eq. (8) is achieved by converting the system into an augmented state-space
model which contains the linear system dynamics and the representation of R̂(t) as a linear state-space model.
The linear system parameters, ωn and ζ, are estimated by a linear identification of the system, which will be
biased by the nonlinearity. This is not an issue as the identified “missing” force R(t) is actually identified with
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a component correcting that linear bias, as was observed in [11]. Once the Kalman filter and RTS smoother
have recovered the states, the practitioner is in possession of estimates for yi, ẏi and R̂(t). Given these
estimates and the assumed linear parameters ωn and ζ it is possible to estimate the expected total internal
restoring force of the model f(y, ẏ). It remains to identify the functional form of the nonlinearity f(y, ẏ),
unfortunately, the estimated restoring force will still contain the effect of the random excitation U(t) in its
estimate of R̂(t). However (and luckily for identification), the expectation over the input U(t) remains zero
because it is white noise. Therefore, one simply has to determine the expectation over the restoring force
in the absence of noise. Recalling Eq. (2) it has already been seen how an unknown nonlinear function can
be learnt non-parametrically from data and the expectation of that function at some new test point E [y?] is
available. It transpires that the expectation E [y?] is the same as the expectation of the underlying noise free
function E [f?] which in the case being considered is the contribution of the internal restoring force f(y, ẏ)
without the influence of U(t). In this way, it is possible to use the estimated quantities from the filter/smoother
to infer the internal restoring force of the nonlinear system if that system is under broadband excitation close
to white Gaussian noise.

4 RESULTS

To demonstrate the proposed method a simulated Duffing oscillator is studied with the equation of motion,

mÿ + cẏ + ky + k3y
3 = v(t), v(t) ∼ N

(
0 , σ2p

)
(9)

with mass m = 1, viscous damping c = 2, linear stiffness k = 1 × 104 and cubic stiffness k3 = 1 × 109

driven by a white noise v(t) with variance σp. For the purposes of simulation this white noise is modelled as
a multisine including every 0.2Hz limited from 0.2Hz to 1000Hz. The dataset is simulated for five seconds
with a sample rate fs = 2048Hz with the measurements being acceleration which has a random Gaussian
measurement noise added with a variance of one.

Initially, estimates of the linear system parameters are made as ωn = 46.2Hz and ζ = 0.021 which are
biased from the true values of 15.91Hz and 0.01 respectively by the nonlinearity in the system. Using these
biased linear estimates the states of the system are recovered along with the estimated contribution R̂(t) using
the Kalman filter and RTS smoother. In Fig. 1 the displacement, velocity and R̂(t) states are shown, for
the displacement and velocity the ground truth is also indicated. Despite the significant bias in the linear
parameters of the model, it is seen that the displacement and velocity of the system are estimated with a high
degree of accuracy (normalised mean squared error values of 0.19% and 0.11% respectively). This fit quality
is sustained even when there is a substantial nonlinear contribution to the system, see right hand panes of
Fig. 1 for a detailed view. Turing attention to the recovered R̂(t) which is the latent force in the system, it can
be seen that the signal is definitely not Gaussian white noise, this is to be expected as R̂(t) contains both the
unmeasured input U(t) and the missing components of f(y, ẏ). This identification also serves as a detector
for nonlinearity in the system, if the estimated R̂(t) is indistinguishable from white noise (and the assumption
of broadband loading holds) then it may be assumed that inside the observed data no significant nonlinearity
is active.

Given that a good estimate of y, ẏ and R̂(t) is now in hand, one can consider identifying the nonlinearity.
As discussed this will be done non-parametrically by fitting a GP from the estimated y and ẏ to R̂(t). In
Fig. 2 this fit is shown, Fig. 2a shows the result of fitting the GP to the recovered R̂(t) and predicting across
displacement and velocity. It can be seen that the learnt surface does not align well with the known true
restoring force in the model. Remember that the linear parameters used in the filter were biased, the mismatch
between the surface and the true force is a result of the GP estimating R̂(t) correcting for this bias. However,
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Fig. 1: State estimates recovered by the smoother, showing the expected values (in blue) against the ground truth (black
dots). The ground truth is shown only for the displacement and velocity states. In the right hand panes a section of the
time series, where the most nonlinear contribution is found, is shown in more detail.

(a) Without linear contribution (b) With linear contribution

Fig. 2: Recovered restoring force surfaces, the expected restoring force is shown in blue and the true restoring force in
the training data as black dots.

it is still possible to use the biased parameters to determine the total restoring force (linear plus nonlinear
components) which may be compared to the ground truth, this comparison is made in Fig. 2b. It is clear that
the learnt restoring force surface now aligns very well with the ground truth, this learnt surface could be used
in further simulation or could be interrogated by an engineer seeking to extract physical insight.

To highlight the fit of the nonlinear component in the system once this restoring force GP has been learnt,
Fig. 3 shows a slice of the surfaces from Fig. 2 at the zero velocity point. In addition to the expected surface
presented in Fig. 2, the 3σ confidence intervals on the learnt noise-free restoring force function are also
shown. In Fig. 3a the linear bias in R̂(t) is shown far more clearly than before, the negative linear term can be
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(a) Without linear contribution (b) With linear contribution

Fig. 3: Isolating only the stiffness component from the learnt restoring force. The true restoring force is shown in black,
the expected restoring force in blue and the ±3σ confidence bounds in red.

seen to align very well with the overestimation of ωn, which was used in the filter. Again correcting for this
inaccuracy in the linear parameters by investigating the total restoring force, Fig. 3b shows how the cubic
behaviour in the Duffing oscillator is captured very well by the learnt GP model. The classic behaviour of
the GP is also seen where, once extrapolating from the already observed data, the variance in the estimate
increases. Encouragingly, it appears that (owing to the longer length scale learnt by the GP) the model is also
able to extrapolate quite well the cubic behaviour of the stiffness nonlinearity.

5 CONCLUSIONS

This paper has shown how a Gaussian process latent force model framework might be applied to identification
of a dynamic system with an unknown nonlinearity from only output (response) data. While the general case
is highly non-identifiable, it has been seen that, if the input to the system can be assumed to be white Gaussian
noise, the expectation over a recovered latent force contains the contribution of the nonlinear dynamic
components of a system. It was shown that even when the estimates of the linear modal properties of a system
are biased the GPLFM remains capable of recovering extremely accurate estimates of the displacement and
velocity of the system. Alongside this, the recovered latent force contains the unmeasured input to the system,
the contribution of the nonlinear terms in the equations of motion and a contribution which corrects the bias
in the linear modal parameters. It is then possible, by considering the expected noise free function from the
displacement and velocity to this recovered latent force to infer a good model for the nonlinearity in the
system and correct the linear bias. The current work demonstrated this method only on a simulated single
degree of freedom system, it is therefore reasonable to consider that the key point of future work will be proof
of concept in an experimental study and extension to more complex dynamical systems with multiple degrees
of freedom.
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[8] Noël, J.-P., & Kerschen, G. (2017). Nonlinear system identification in structural dynamics: 10 more
years of progress. Mechanical Systems and Signal Processing, 83, 2–35.

[9] Petersen, Ø., Øiseth, O., & Lourens, E. (2022). Wind load estimation and virtual sensing in long-span
suspension bridges using physics-informed Gaussian process latent force models. Mechanical Systems
and Signal Processing, 170, 108742.

[10] Rogers, T. J., Worden, K., & Cross, E. (2020). On the application of Gaussian process latent force
models for joint input-state-parameter estimation: With a view to Bayesian operational identification.
Mechanical Systems and Signal Processing, 140, 106580.

[11] Rogers, T. J., & Friis, T. (2021). A latent restoring force approach to nonlinear system identification.
arXiv preprint arXiv:2109.10681.

[12] Rogers, T. J., Worden, K., & Cross, E. J. (2020). Bayesian joint input-state estimation for nonlinear
systems. Vibration, 3(3), 281–303.
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ABSTRACT  

Identification and localization of a dynamic impact load applied to a structure are crucial for monitoring 

its health and safety. Traditional methods based on inversion techniques, either in time-domain or 

frequency-domain, require large computational cost which cannot achieve real-time implementation. 

This study proposes a novel deep learning algorithm for accurately localizing a dynamic impact load 

applied to a structure by deploying a limited number of sensors. The development of the deep learning 

algorithm involves: 1) time history analysis of a structural finite element model subjected to random 

impact loading to generate training dataset; 2) development of a deep neural network model to extract 

and regress the inherent relationship in multivariate time series between input loading and output 

responses. The proposed approach is verified on a rectangular plate structure subjected to simulated 

impact loading at a total of 88 possible locations. A high accuracy rate of 96% achieved in 1 millisecond 

demonstrate the superiority of the proposed deep neural network in achieving real-time localization of 

structural impact load. 

Keywords: Load localization, Real-time inference, Finite element model, Deep neural network  

1. INTRODUCTION 

Plates are essential components that have been widely used in many civil and mechanical engineering 

applications, such as bridges, aircrafts, ships, wind turbines [1]. During the life cycle of a plate or plate-

like structure, it will experience various kinds of external load actions that may affect its health 

condition. Impact load is one of the most common types of loading that can cause damage to a plate 

structure [2]. Direct localization of the impact load is a challenging topic in the field of structural health 
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monitoring (SHM) for two main reasons: 1) a force transducer directly placed on the structure may be 

damaged when measuring the applied force; 2) it is not possible to take measurement at each location 

due to limited accessibility.  

Indirect approaches have been developed in both frequency domain [3-5] and time domain [6] through 

operational modal analysis (OMA) to overcome these problems in direct localization. These methods 

are also called inverse methods as they determine system inputs (e.g., location of impact load) based on 

given responses (e.g., recorded output signals), boundary conditions, and structural model [7]. Both 

methods involve placement of a finite number of sensors to measure output responses [8]. In the 

frequency domain, Fourier transformation is performed on the recorded responses and then multiplied 

by the inverse of the frequency response function (FRF) matrix to determine the input force. In the time 

domain, the input force is estimated by solving the convolution equation of the structural response as a 

function of its impulse response function (IRF). It has been reported that the time domain methods are 

more suitable to identify dynamic impact load as the frequency domain methods require long stationary 

condition [2]. However, even the time domain methods require rigorous mathematical derivation based 

on deconvolution theory, making their applications less practical. Another drawback of those methods 

is the real-time incapability, which is essential for fast and effective decision making to mitigate 

potential damage.   

In recent years, deep learning (DL) methods have been widely used in SHM and deep neural network 

(DNN) models have been developed for sensor placement, structural response prediction, and damage 

detection [9]. DNN models allow computers to learn the relationship from a large amount of input-

output data samples by extracting the certain features and use this trained model to automatically 

generate desired outputs based on the learned features for given inputs [10]. One of the biggest 

advantages of this method is that it can achieve real-time requirement. Liu and Zhang [11] developed a 

computationally efficient CNN model for crack detection in metal plates. Pan and Yang [12] proposed 

a real-time convolutional neural network (CNN) model to inspect rebar exposure in reinforced concrete 

structures and evaluate repair cost. Li et al. [13] trained an attention-based long-short term memory 

(LSTM) model DL to predict structural responses under future earthquake events in real-time manner. 

Pan et al. [14] developed a CNN model to determine the best instrumentation scheme for infrastructure 

and reconstruct the seismic responses at unmeasured locations in milliseconds.  

Although DL methods have shown powerful capacity in SHM and Operationa, their applications in 

impact load identification, however, are very limited. Zhou et al. [15] and Chen et al. [16] proposed two 

different DNN models for load identification in plate structures, but the former did not consider load 

localization while the latter did not meet real-time requirement (i.e., time cost was above one minute). 

In this regard, an online impact load localization framework is developed based on a deep learning 

algorithm in this paper. As one of the four components of the project, this framework has two main 

parts: 1) a DNN model is developed and trained with input-output time series data obtained from 

structural FE model subjected to large volume of impact loading at random locations; 2) the trained 

model that learns the spatial and temporal features of dynamic responses among different locations is 

used to localize the source input load using measured responses from a limited number of sensors in 

real time. The other three components of the project include: impact load localization and damage 

localization using experimental data; extention of the DNN model to OMA using simulated data; and 

extention to OMA using experimental data. The widely used accelerometer sensor in SHM is adopted 

to measure the acceleration response. The proposed method is demonstrated on a numerical FE model 

of a thin aluminum plate which is gridded into 80 shell elements with a total of 88 nodes. A number of 

4 accelerometer sensors are placed where the recorded responses are used as inputs to localize an 

unknown impact load. The localization accuracy and real-time performance of the proposed method are 

discussed. 

2. PROPOSED METHOD 

This section describes the proposed framework and the DNN model in detail. 
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2.1. Framework 

The overview of the proposed framework is presented in Figure 1, which includes three components, 

namely, dataset generation, network training and testing, and real-time application. The first step is to 

generate reliable and sufficient dataset of a target plate structure that can cover as many impact scenarios 

as possible. Time history analyses on FE model of the structure are carried out by applying random 

impact load at any grid nodes. The impact load is characterized as a typical triangular impulse loading 

defined by loading duration and amplitude parameters. Large number of different loading pattern can 

be generated by adjusting the parameters. During each random loading case, the input loading pattern 

and the location are treated as inputs, while the dynamic acceleration time history responses at all grid 

nodes (except those at fixed boundary) are recorded as outputs. Next, the generated input-output dataset 

is used to train the DNN model to learn the multi-variate time-series hidden features of dynamic 

responses between different grid nodes on the plate as well as with input impact load. The final step is 

to apply the developed localization algorithm and an pre-defined instrumentation plan into the plate 

structure. With the continuously measured acceleration responses, the neural network can localize the 

impact load in real-time.  

 

Figure 1. Proposed framework for impact load localization 

 

2.2. CNN-BLSTM algorithm design 

The task can be characterized as a multi-target regression problem since the goal is to localize the impact 

position based on the data sampled by instrumented sensors. A DNN model is designed to regress input 

signals and determine the location of the impact load. The core idea of the proposed DNN model is to 

extract spatial features of the input multi-variate time series through convolutional network layers, and 

to exploit the temporal relationship by recurrent network layers.  

To properly exploit the multivariate input signals, first, CNN layers are embedded in the network model 

to learn the spatial data correlation. The general formulation of the CNN layers can be provided as 𝐇 =
𝐶𝑁𝑁(𝐗), where H represents the extracted features in terms of the input acceleration signal X. Multiple 

convolutional layers are used in the model to extract high-level features.      

CNN features consider the spatial correlation over multivariate time series. To capture the temporal 

correlation between sensor readings at different time steps, the sequential chracteristics within the 

learned convolutional features is learned using a recurrent neural network. A long-term time series input 

may lead to the problem of gradient disappearance or explosion in back-propagation. To extract the 

temporal features that exist among long-term time series, the proposed model splits the full-length time 

series into p slices and input them into recurrent layers. The split slices are given as 𝐻1:𝑝 =

[𝐻1, 𝐻2, … , 𝐻𝑝]. These shorten slices can avoid the problem of gradient disappearance or explosion 

caused by the long-term time series inputs. LSTM generally operates in the direction of time flow. 

However, the variation of sensor readings is bidirectionally related. To extract the bidirectional 

connections between historical and future data, a bidirectional LSTM (BLSTM) structure is utilized in 

the proposed model, which is shown in Figure 2. 
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  Figure 2. Bidirectional LSTM 

 

In the figure, B1 represents forward operation in the BLSTM, and B2 represents backward operation. 

In the forward operation, the hidden state 𝐡𝑡 is related to 𝐡𝑡−1 while the hidden state 𝐡𝑡
′  of the hidden 

layer is related to 𝐡𝑡+1
′ . Since it is a bidirectional network, each recurrent layer has two hidden states. 

After the two hidden states are merged through a concatenation and Relu activation at the last BLSTM 

module. Finally, a fully connected layer is embedded to output the final required position estimation. 

The final output is the position of an impact and is generated by a fully connected layer. 

The overall architecture of the proposed neural network, named as CNN-BLSTM, is presented in Figure 

3. The original data is the time-series signals of n acceleration sensors, which is input to the CNN layer 

for feature extraction, and then the data slices are combined into p sequences and sequentially fed into 

the BLSTM to exploit the temporal correlation. A fully connected (FC) layer completes the regression 

task and generate the impact location result.  

 

Figure 3. The overall architecture of the proposed DNN model 

3. NUMERICAL STUDY 

To validate the performance of the proposed method, a numerical study is conducted on a plate 

structure. The plate had a dimension of 640 mm by 800 mm with a thickness of 20 mm. A FE model of 

the plate was developed in SAP2000 using thin shell element, as seen in Figure 4a. The Young’s 

modulus of the plate was 250,000 MPa with a Poisson’s ratio of 0.3 and a density of 2,800 kg/m3. The 

plate was meshed with 8 by 10 elements and a fixed bounday condition was assigned at the bottom 

edge. There are a total of 88 nodes that can be used for applying impact load in the out-of-plane 

direction. 

168



 

 

             
a)                                                                           b) 

Figure 4. a) FE model of the plate structure and b) impact load pattern 

3.1. Generation of dataset 

There are three datasets required in the case study: training set, validation set, and test set. All the 

datasests are generated by performing time history analysis on the developed FE model of the plate 

subjected to random impact loads at 88 grid nodes. An impact load can be numerically characterized as 

a triangular load pattern, as seen in Figure 4b. Two main parameters, amplitude P and duration time Δt, 

are used to define a impact load case. According to previous studies, a range of 0.002 sec to 0.02 sec 

was considered for Δt where the total duration was 0.5 sec. The peak load was in a range from 1kN to 

5 kN. For each loading case, the impact load location, loading pattern, and the acceleration time histores 

at non-fixed grid nodes were recorded. In total, 1,000 loading scenarios were simulated and the datasets 

were collected at a sampling rate of 1,000 Hz for 0.5 sec. Figure 5 shows the accelearation responses at 

three selected locations during one impact load simulation. In this case study, four locations were 

assumed to place acceleraometer sensors.       

          
Figure 5. Illustrative dynamic responses at grid nodes during sample impact scenario. 

 

3.2. Neural network training 

To assess the accuracy of the proposed method, a mean absolute error (MAE) is calculated for each 

impact loading case in the test set according to Qiu et al. [2]: 

𝑒𝐸𝑟𝑟𝑜𝑟 = √(𝑥 − �̂�)2 + (𝑦 − �̂�)2 (1)  
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where x and y denote cooridnates of actual impact load, while �̂� and �̂� denote cooridnates of predicted 

impact load location. The cooridnate is a linear function of grid length, for example, in Figure 5, 

coordinate [1, 3] indicates a position of the third column of the first row in the plate. It marks as "True" 

if the distance between the estimated position and the label position is zero, otherwise, it marks as 

"False", indicating a misjudgement. It should be noted that the locations within an grid element was not 

considered. The final estimation accuracy is recorded as "Accuracy" rate, which is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒

𝑇𝑟𝑢𝑒 + 𝐹𝑎𝑙𝑠𝑒
∗ 100% (2)  

The analysis was performed using Python 3.7 and Pytorch 1.11 on a desktop PC with an Nvidia GeForce 

MX 150 GPU, an Intel i5-8250U CPU and 8 GB RAM. In the numerical example, the learning rate is 

set to 0.01; the number of training epochs is set to 350 , the training data ratio is set to 0.8 (i.e., 800 time 

history analyses).  

The loss function is calculated by the MAE. There are three convolution layers embedded in the model 

(with kernel size 9, padding size 4, and stride 1). The number of hidden neurons in each layer is 128; 

the number of fully connected layer is set to 3; the number of neurons in the first layer is 256, the 

number of neurons in the second layer is 50 , and the number of the last layer is 2. During the training 

process, the model automatically updates the learnable weights. The loss value during training is shown 

in Figure 6. It can be observed that the loss value converges around 50 training epochs. 

 

Figure 6. Loss value variation 

3.3. Impact load localization performance 

The final accuracy rate and the error distribution probability is shown in Figure 7. It can be found that 

the accuracy of the CNN-BLSTM model has reached as high as 96% of all 200 test scenarios, meaning 

only 8 misjudgments. It is worth to mention that the positional deviations of the misjudgment results 

are all within one unit length of the grid.  

 

Figure 7. Accuracy rate and error distribution. 
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Figure 8 illustrates the location identification results of 5 testing points based on the CNN-BLSTM 

model. The real impact locations were marked as a red diamond, 3 of them are “True” identification 

which was marked as a blue triangle, and 2 of them are “False” identification which were marked as a 

grey triangle. It can be seen that the “True” identification location completely coincide with the real 

ones as the eError is 0, while those “False” identifications were at the most adjacent grid point with one 

unit length.    

The training time for each epoch was 0.8 sec with a total training time of 4.7 mins. The average time 

cost for predicting the impact location in the test set was 1 ms, which satisfies the real-time requirement. 

 

Figure 8. Real impact locations and predicted locations of 5 testing points. 

4. CONCLUSIONS 

This paper proposed a novel DNN model for localizing impact load on plate structures in real-time. The 

developed model is trained by using datasets generated from time history analysis on a structural finite 

element model to learn the inherent spatiotemporal relationship between input impact load and output 

acceleration dynamic responses among different locations. A numerical case study was performed on a 

thin plate to examine the effectiveness of the proposed method.  

Based on the analysis, it was found for the case study plate with 4 accelerometer sensors deployed, real-

time load localization can be achieved. The accuracy rate for impact load localization was 96%. The 

time cost of the localization was 1 millisecond, which fulfill the real-time requirement. Since the 

presented study was limited to numerical demonstration, future research needs to examine the real-

world application with different materials and boundary conditions, as well as optimal sensor 

placement. Future work also includes the extension of this method to damage localization and OMA 

using both simulated data and experimental data as part of the project. Such experimental programs are 

underway at the Earthquake Engineering Research Facility lab at The University of British Columbia.  
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ABSTRACT 

Masonry building aggregates represent a recurrent structural typology of historic centers, which has 
shown several damages during earthquake events. Thus, improving the seismic behavior of building 
aggregates takes on great importance not only to increase the safety of their occupants but also to reduce 
the losses on their cultural and artistic value. Unfortunately, the lack of information about their structural 
characteristics (material properties, connections between structural elements, etc.) prevents the set-up 
of suitable models without calibrations through the results of measurements on the real structure, as 
commonly done for other structural typologies. With the aim of improving the predictions of finite 
element (FE) models of masonry building aggregates, this study reports the results of a preliminary 
research activity developed within S-MoSES project (Smart Monitoring for Safety of Existing 
Structures and Infrastructures). A three-dimensional FE model with solid elements of a portion of a 
masonry building aggregate has been set-up to obtain valuable information for the design of a 
monitoring system. The sensor network, once installed on the building aggregate, will be used in 
subsequent research activities of S-MoSES project to develop a procedure for the FE model updating. 

Keywords: Masonry building aggregates, Three-dimensional FE model, Monitoring system 

1. INTRODUCTION 

Historic centers mainly comprise masonry building aggregates, whose safeguarding and preservation 
are mandatory for modern societies. When hit by earthquakes, urban aggregates have shown significant 
structural damages together with several injuries and deaths. Thus, implementing appropriate retrofit 
strategies on existing building aggregates represents a priority for public administrations. Establishing 
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the right retrofits for existing structures requires reliable finite element (FE) models, which still 
constitute a complex task. 

A masonry aggregate is an assembly of connected structural units. An accurate definition of the single 
structural units and their mutual interactions requires a thorough knowledge of the whole building. 
Unfortunately, this task is commonly accomplished by accepting non-negligible uncertainties since 
acquiring information about these structures is complex. Documents of historic constructions erected 
in progressive steps are difficult to recover, and the definition of the geometry and construction details 
is not always achievable. In addition, a suitable definition of the boundary conditions of structural units 
can be attempted only through a complete FE analysis of masonry building aggregate based on in-situ 
tests to estimate the mechanical properties [1-3]. This task is mainly conducted for research scopes and 
strategic or monumental structures. For these reasons, the Italian building code suggests simplified 
analyses conducted through very simplified methods, not enough validated.  

The scientific literature on seismic behavior of masonry aggregates has been growing in the recent 
years. Advanced numerical strategies have been applied in recent works [4-5], which are based on the 
coupling of nonlinear static and dynamic seismic analyses on three-dimensional FE models together 
with local analyses. The application of different analysis procedures allows catching the seismic 
behavior of building aggregates as accurate as possible. Nonlinear analysis procedures have been 
developed to study the structural units [6-8] for practical applications. A seismic fragility assessment 
has been conducted in [9] with reference to a case study. Shake table tests have been also employed to 
explore the seismic behavior of masonry aggregates [10-11]. Finally, numerical analyses have been 
used to evaluate various strengthening techniques [12]. 

An improvement in the definition of the FE model of a building aggregate may be obtained through 
full-scale measurements of the modal frequencies and shapes, which allow updating the model. With 
this aim, this paper refers to the first step of a more extensive study within the S-MoSES project (Smart 
Monitoring for Safety of Existing Structures and Infrastructures), financed by MUR (Italian Ministry 
for University and Research), which intends to update the FE model by taking advantage of the 
information provided by an ad hoc monitoring system installed on a building aggregate. The ambient 
vibrations registered by accelerometers placed on salient points will be used to define the system's 
dynamic behavior (e.g., main natural frequencies and modal shapes). This information will be used for 
updating the FE model of the entire aggregate or single units, in which the boundary conditions should 
be properly modeled (e.g., spring constants simulating the interaction with the neighboring structural 
units). The work reported in this paper is limited to the design of the monitoring system for a building 
aggregate of the historic center of Anghiari (Arezzo, Italy), selected as a case study. For this scope, a 
modal analysis of the three-dimensional FE model of the building aggregate has been carried out. The 
model's response has been used to define both number and positions of the measuring points. 

The next section is dedicated to the description of the case study, in which information about the 
materials, the geometry and the structural units of the aggregate are reported. Section 3 refers to main 
characteristics of the FE model used in the dynamic analysis of the structure. The results of the modal 
analysis on the aggregate are reported in section 4 together with some indications about the positions 
of the accelerometers belonging to the monitoring system. Finally, some concluding remarks are 
reported at the end of the paper.  

2. CASE STUDY 

The building aggregate is in Baldaccio Square, which is a central place in the city of Anghiari (Arezzo, 
Italy), located just outside to the medieval walls. From the historic document denoted “Codice Corsi”, 
date back to ‘700, the building presents a configuration very close to the current one. Other documents 
date back to ‘800 allow identifying some structural interventions, like the removal of the buttress from 
a lateral wall as well as the presence of ties. Figure 1 shows the buildings at the earlier of the twentieth 
century, which is practically unchanged a century later. 

An important concern is that the building does not have independent structural behavior since it shares 
midwalls with adjacent buildings. This means that its seismic response should be studied at the level of 
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the aggregate. Due to the limited information available during this preliminary research, the dynamic 
behavior of the buildings has been analyzed by considering a three-dimensional model with the plan 
shown in Figure 2. The area bounded by dashed lines represents a part of the aggregate which is 
structurally connected to the analyzed one but for which no information are available. 

The geometry of the aggregate is irregular in height; Figure 3 shows a variation of the number of floors 
in the modeled structure. In particular, the highest building shows a ground floor, two elevated floors 
and an attic, while the other building presents the same floors except being characterized by only one 
elevated floor. Both buildings have a basement underneath all the plans. 

A systematic use of wood was observed in structural elements of floors and roofing structures, while 
the bearing walls have been constituted by roughly hewn stone blocks. 

  

Figure 1. Baldaccio Square in 1903 (left) and 2018 (right). 

 

 

Figure 2. Plan view of the building aggregate at the ground level considered in the present study. 
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Figure 3. Front and lateral views of the building aggregate. 

3. FE MODEL 

The FE model of the building were made through Abaqus CAE software [13], which is characterized 
by quadratic tetrahedral elements namely C3D10. Some sensitivity analyses on the dimension of the 
mesh elements were carried out to check the convergence of the results. 

Linear elastic behavior has been assumed for all the elements of the FE model. The material density, 
the Poisson coefficient and the elastic modulus of the masonry walls have been considered, respectively, 
equal to 2000 kg/m3, 0.25 and 1230 MPa, in agreement with the values provided by IBC [14-15]. To 
compute the natural modal frequencies and shapes of the model structural and non-structural weights 
together with the 30% of the live loads for a residential building (2 kN/m2) have been used. A view of 
the three-dimensional FE model is reported in Figure 4. 

The basement has been modeled to account for its stiffness along the vertical direction.  The basement 
walls have been simply supported at the base and restrained in the horizontal directions to consider the 
confinement provided by the adjacent soils.  
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Figure 4. FE model of the aggregate. 

4. RESULTS 

A modal analysis of the three-dimensional FE model has been carried out to identify the parts of the 
masonry aggregate mainly involved in the dynamic of the structure. Modal shapes up to the tenth mode 
have been estimated but just the first three modal shapes are shown in the following figures, the other 
modal shapes refer to local vibrations. It is worth noting that the results should be considered just 
preliminary outcomes since no information about the iteration between the analyzed structure and the 
neighboring buildings were available when the FE model was built. They are used just for the definition 
of the monitoring system that will be installed in the masonry aggregate. 

The first natural mode can be considered as translational mode along the y-direction by considering the 
reference system reported in Figure 5. As expected, it is characterized by displacements that increase 
from the ground to the top floor, but it can be also seen that the main part of the horizontal displacements 
occur at the ceil of the ground floor. It is mainly due to the presence of the openings in the walls. A 
similar behavior is observed in the second mode, which mainly involves displacements in the x-
direction (Figure 6). Similar considerations can be done also for this mode shape. Finally, the third 
mode can be classified as a torsional mode which shows a progressively increase of the modal rotations 
from the ground to the top floor (Figure 7). It is worth noting that the basement cannot shows horizontal 
oscillations in the external bearing walls due to horizontal restraints but can manifest vertical 
displacements. This means that the ground floor is supported by a “bed of springs” characterized by the 
stiffness of the walls. 

The results of the modal analysis on the three-dimensional FE model of the portion of masonry building 
aggregate analyzed provide useful indications for the design of the monitoring system. First, 
preliminary information about the natural frequencies and modal shapes are useful to identify the modes 
of the structure under measurement. From a practical point of view, the indications gained by a 
preliminary modal analysis of the real structure helps to discern spectral peaks associated to the natural 
modes from those caused by environmental and electrical noises as well as secondary elements. Thus, 
subsequent analyses for the extraction of the modal shapes from the measured signals are facilitate. 
Second, a preliminary knowledge of the modal shapes gives valuable indications about the positions of 
the sensors. In the considered case study, the shapes of the first translational modal shapes suggest that 
the main variations in the horizontal displacements along the vertical faces are concentrated to the first 
floor. Therefore, for a proper identification of the first natural modes, sensors should be located at the 
top of the ground floor on both directions, other than at the classical sensor positions located at the top 
of the building where maxima modal displacements are shown. In addition, the identification of the first 
torsional mode requires the installation of the sensors on three of the four top edges of two orthogonal 
façades. 
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Figure 8 shows the sensor positions (red dots) suggested by the results of the modal analysis for the 
considered portion of masonry building aggregate. The positions of the sensors on the façades are also 
chosen to catch possible in-plane floor deformations. 

 

 

 

Figure 5. First translational mode along x. 

 

 

 

 

Figure 6. First translational mode along y. 
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Figure 7. First torsional mode. 

 

Figure 8. Sketch with sensor positions. 

5. CONCLUSIONS 

A three-dimensional FE model with solid elements of a portion of a masonry building aggregate, located 
in Tuscany, has been set-up with the aim of obtaining valuable information for the design of a 
monitoring system. The work represents a preliminary research activity within S-MoSES project (Smart 
Monitoring for Safety of Existing Structures and Infrastructures), which intends to update the FE model 
by taking advantage of the information provided by an ad hoc monitoring system installed on a building 
aggregate. In particular, the results of the modal analysis on the FE model of the aggregate have been 
used to gain important information for the definition of both the positions and number of sensors to be 
installed on the real structure. The sensor network, mainly composed by accelerometers, will be used 
for a proper identification of the structural interaction with the adjacent buildings belonging to the same 
aggregate, for which no detailed information are available. 
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ABSTRACT 

A new concept of length of a continuous mode shape has been recently defined by the authors, which 
depends on the mode shape and how the volume is distributed in the structure. This concept was then 
extended to discrete systems by introducing the concept of a volume matrix. However, finite element 
programs do not provide the lengths of the mode shapes according to this new definition. Moreover, 
the volume matrices cannot be exported from the finite element programs. 

In this paper, an approximate approach is proposed to calculate the length of numerical mode shapes 
from the nodal components. It has been demonstrated that the length can be estimated with a reasonable 
accuracy if small finite elements are used. These new techniques are illustrated by several numerical 
models assembled in ABAQUS.  

The length of numerical mode shapes can be used to estimate the length of experimental mode shapes 
using the structural dynamic modification, which is valuable information to validate the modal masses 
estimated with the existing techniques to determine the modal masses in operational modal analysis. 

Keywords: Mode shapes, Conference, Operational, Modal, Analysis 
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1. INTRODUCTION 

A mode shape is said to be normalized to the unit length if its length is unity. In one-dimensional 
continuous systems, the Euclidean length squared 𝐿𝐿𝐸𝐸𝐸𝐸2  of a function 𝝍𝝍(𝒙𝒙), also known as Euclidean 
norm or 𝐿𝐿2 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, is defined as [1]: 

𝐿𝐿𝐸𝐸𝐸𝐸2 = � |𝜓𝜓(𝑥𝑥)|2𝑑𝑑𝑥𝑥
𝐿𝐿

0
 (1)  

In discrete systems, the length squared of the mode shape vector  𝝍𝝍 (length of a vector in an Euclidean 
space) is defined as [1]: 

𝐿𝐿𝐸𝐸𝐸𝐸2 = 𝝍𝝍𝑻𝑻𝝍𝝍 (2)  

The main inconvenience of Eq. (2) is that the length depends on the number of components of the 
vector. 

In [2] the squared length 𝐿𝐿𝐸𝐸2  of the mode shape 𝝍𝝍  was defined as the average of the length squared 
|𝜓𝜓|2 of the mode shape over the volume 𝑉𝑉of the structure i.e.: 

𝐿𝐿𝐸𝐸2 =
1
𝑉𝑉𝑇𝑇
� |𝝍𝝍|𝟐𝟐

𝑽𝑽

𝑑𝑑𝑉𝑉 (3)  

where 𝑉𝑉𝑇𝑇 is the total volume of the system. 

Eq. (3) secures that the length definition has the same unit as the mode shape. Thus, if the mode shape 
is dimensionless, so is the length. Eq. (3) was naturally extended to discrete systems as: 

𝐿𝐿𝐸𝐸2 =
1
𝑉𝑉𝑇𝑇

 𝝍𝝍𝑻𝑻𝑽𝑽𝝍𝝍 (4)  

where 𝑽𝑽 is the volume matrix of the system. 

In continuous straight planar beams with length L, distributed mass density 𝜌𝜌(𝑥𝑥) and cross section with 
area 𝐴𝐴(𝑥𝑥), the modal mass (also denoted as generalized mass in some books of structural dynamics) 
corresponding to an arbitrary normalized continuous mode shape vector  𝝍𝝍(𝒙𝒙), is given by [2,3,4]: 

𝑛𝑛𝐸𝐸 = � 𝜌𝜌(𝑥𝑥)𝐴𝐴(𝑥𝑥)|𝝍𝝍(𝒙𝒙)|2𝑑𝑑𝑥𝑥
𝐿𝐿

0
 (5)  

A general equation to calculate the modal mass for the continuous case is given by [2]: 

𝑛𝑛𝐸𝐸 = � 𝜌𝜌|𝝍𝝍|2𝑑𝑑𝑉𝑉
𝑉𝑉

 (6)  

wich can be easily extended to discrete systems as: 

𝑛𝑛 = 𝝍𝝍𝑇𝑇𝑴𝑴𝝍𝝍 (7)  

where 𝑴𝑴 is the mass matrix.  

If the mass-density 𝜌𝜌 of a system is constant, Eq. (7) can be expressed as: 

𝑛𝑛𝐸𝐸 = 𝝍𝝍𝑻𝑻𝑴𝑴𝝍𝝍 = 𝜌𝜌 𝝍𝝍𝑻𝑻𝑽𝑽𝝍𝝍    (8)  
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where 𝑽𝑽 is the volume matrix. Eq. (8) can also be formulated as: 

𝑛𝑛𝐸𝐸 = 𝑀𝑀𝑇𝑇  
𝝍𝝍𝑻𝑻𝑽𝑽𝝍𝝍
𝑉𝑉𝑇𝑇

= 𝑀𝑀𝑇𝑇𝐿𝐿𝐸𝐸2     (9)  

If the mass density ρ is not constant, Eq. (7) can be expressed as: 

𝑛𝑛𝐸𝐸 = 𝑀𝑀𝑎𝑎𝑎𝑎𝐿𝐿𝐸𝐸2  (10)  

where 𝑀𝑀𝑎𝑎𝑎𝑎 is an apparent mass. 

One of the problems of the length defined by Eq. (4) is that finite element programs do not provide the 
lengths of the mode shapes. On the other hand, the volume matrices 𝑽𝑽 cannot be exported from the 
finite element programs either. 

If the numerical model is discretized with 𝑁𝑁𝑉𝑉 small finite elements of equal volume  Δ𝑉𝑉 Eq. (4) can be 
approximated as: 

𝐿𝐿𝐸𝐸2 ≅
Δ𝑉𝑉∑ 𝝍𝝍𝒌𝒌

𝟐𝟐𝑵𝑵𝑽𝑽
𝒌𝒌=𝟏𝟏

𝑁𝑁𝑉𝑉Δ𝑉𝑉
=
∑ 𝝍𝝍𝒌𝒌

𝟐𝟐𝑵𝑵𝑽𝑽
𝒌𝒌=𝟏𝟏
𝑁𝑁𝑉𝑉

=
𝝍𝝍𝑻𝑻𝝍𝝍
𝑁𝑁𝑉𝑉

   (11)  

However, in numerical models, the components of the mode shapes are commonly known at the nodes 
of the elements, and Eq. (11) can also be approximated by means of the expression: 

𝐿𝐿𝐸𝐸2 ≅
𝝍𝝍𝑻𝑻𝝍𝝍
𝑁𝑁

 (12)  

where N is the number of nodes in the model. 

According to the structural dynamic modification (SDM), the experimental mode shapes can be 
expressed as a linear combination of the numerical mode shapes [5,6], i.e.: 

𝝍𝝍𝑿𝑿 = 𝝍𝝍𝑭𝑭𝑭𝑭𝑻𝑻 (13)  

where 𝑻𝑻 is a transformation matrix. 

Due to the fact that the experimental mode shapes are only known at the measured DOF’s, an 
approximation of matrix  𝑻𝑻 can be obtained by means of the expression [5]: 

𝑻𝑻 = 𝝍𝝍𝑭𝑭𝑭𝑭𝒂𝒂
+ 𝝍𝝍𝑿𝑿𝒂𝒂 (14)  

where ‘+’ indicates pseudoinverse and subindex ‘a’ indicates active or measured DOF’s. The 
experimental mode shapes can then be expanded to the unmeasured DOF’s by: 

𝝍𝝍𝑿𝑿𝒅𝒅 = 𝝍𝝍𝑭𝑭𝑭𝑭𝒅𝒅𝑻𝑻 (15)  

where subindex ‘d’ indicates deleted or unmeasured.  

Finally, an approximation of the squared length of the experimental mode shapes can be obtained using 
the expanded experimental shapes with the expression: 

𝐿𝐿𝐸𝐸𝑋𝑋
2 ≅

𝝍𝝍𝑿𝑿
𝑻𝑻𝝍𝝍𝑿𝑿

𝑁𝑁
 (16)  

where it is assumed that the number of elements is the same in both the numerical and the experimental 
models. 
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2. A CANTILEVER BEAM WITH CONSTANT MASS-DENSITY 

2.1. 3D numerical model  

A steel cantilever beam with rectangular cross-section (4cm×5cm) and 1 meter long, was assembled in 
the finite element software ABAQUS [7] (see Figure 1-a). The steel was considered linear -elastic and 
the following material properties were assumed: mass-density 𝜚𝜚 = 7850 𝑘𝑘𝑘𝑘/𝑛𝑛3, Young’s modulus 
𝐸𝐸 = 210 𝐺𝐺𝐺𝐺𝐺𝐺, and Poisson ratio 𝜈𝜈 = 0.3. The total mass of the system is  𝑀𝑀𝑇𝑇 = 15.7 𝑘𝑘𝑘𝑘.  

 
Figure 1. a) 3D steel numerical model; b) mesh with element size of 0.0025 m 

Particularizing Eq. (3) to a beam with constant cross-section, the analytical length of the mode shapes 
can be obtained with: 

𝐿𝐿𝐸𝐸2 =
1
𝐿𝐿
�|𝝍𝝍(𝒙𝒙)|𝟐𝟐
𝑳𝑳

𝟎𝟎

𝑑𝑑𝑥𝑥 (17)  

The analytical expressions of the bending mode shapes 𝝍𝝍(𝒙𝒙) corresponding to beams with constant 
mass-density and constant cross-section, are reported in the literature [1,8], and for a cantilever beam 
are given as: 

𝜓𝜓𝑘𝑘 = 𝐶𝐶1 �𝑐𝑐𝑛𝑛𝑐𝑐ℎ(𝛽𝛽𝑘𝑘𝑥𝑥) − 𝑐𝑐𝑛𝑛𝑐𝑐(𝛽𝛽𝑘𝑘𝑥𝑥) −
𝑐𝑐𝑛𝑛𝑐𝑐ℎ(𝛽𝛽𝑘𝑘𝐿𝐿) + 𝑐𝑐𝑛𝑛𝑐𝑐(𝛽𝛽𝑘𝑘𝐿𝐿)
𝑐𝑐𝑠𝑠𝑛𝑛ℎ(𝛽𝛽𝑘𝑘𝐿𝐿) + 𝑐𝑐𝑠𝑠𝑛𝑛(𝛽𝛽𝑘𝑘𝐿𝐿) �𝑐𝑐𝑠𝑠𝑛𝑛ℎ

(𝛽𝛽𝑘𝑘𝑥𝑥) − 𝑐𝑐𝑠𝑠𝑛𝑛(𝛽𝛽𝑘𝑘𝑥𝑥)�� (18)  

where ‘k’ indicates the order of the mode and the values of 𝛽𝛽𝑘𝑘 are shown in Table 1. 

 
Table 1. Values of 𝜷𝜷𝒌𝒌𝑳𝑳 for bending modes of a cantilever beam [1,8] 

 𝑘𝑘 
 1 2 3 4 𝑘𝑘 > 4 

𝛽𝛽𝑘𝑘𝐿𝐿 1.8751 4.6941 7.8548 10.996 (2𝑘𝑘 − 1)
𝜋𝜋
2

 

 

In this particular case the squared length results 𝐿𝐿𝐸𝐸2 = 0.25  for all the bending modes. 
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The beam was meshed with quadratic twenty-node hexahedral elements (C3D20R) and with different 
size of the elements. The natural frequencies corresponding to the first eight modes, using an element 
size of 2.5 mm, are presented in Table 2, whereas the mode shapes are shown in Figures 2.  The modal 
masses, corresponding to mode shapes normalized to the largest component equal to unity, are presented 
in Table 3. Where it can be observed that approximately the same modal masses are obtained for sizes 
less than 20 mm. 

 
Table 2. Natural frequencies of the cantilever beam. 

Mode Finite element model C3D20R  
(Element size 2.5 mm) 

Beam model B32 
(Element size 2.5 mm) 

1 1st Bending Y 33.452 33.379 

2 1st Bending X 41.774 41.694 

3 2nd Bending Y 208.090 207.630 

4 2nd Bending X 258.800 258.290 

5 3rd Bending Y 575.950 574.610 

6 3rd Bending X 711.860 710.370 

7 1st Torsion 720.160 719.400 

8 4rd Bending Y 1110.400 1107.600 
 

 

 
Figure 2. First 8 mode shapes. 

 

The length of the mode shapes was calculated with Eq. (12) and they are presented in Table 4. As 
expected, the accuracy obtained with Eq. (12) increases as increasing the number of the elements in the 
model. Moreover, the error is larger for the higher modes. All the lengths obtained with the numerical 
model approaches the analytical values as decreasing the size of the elements, but the rate of 
convergence is slower for the torsional mode.  
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Table 3. Modal masses obtained from the numerical model. 

Mode 
Element size (mm) 

Analytical 
2.5 5 10 20 30 

1 1st Bending Y 3.9267 3.9265 3.9262 3.9253 3.9221 3.925 
2 1st Bending X 3.9305 3.9304 3.9301 3.9294 3.9285 3.925 
3 2nd Bending Y 3.9667 3.9665 3.9661 3.9650 3.9592 3.925 
4 2nd Bending X 3.9927 3.9925 3.9922 3.9914 3.9902 3.925 
5 3rd Bending Y 4.0317 4.0315 4.0311 4.0296 4.0200 3.925 
6 3rd Bending X 4.0927 4.0925 4.0921 4.0912 4.0897 3.925 
7 1st Torsion 4.2839 4.2838 4.2835 4.2884 4.2819 3.925 
8 4rd Bending Y 4.1246 4.1244 4.1239 4.1211 4.1073 3.925 

 

Table 4. Values 𝑳𝑳𝝍𝝍𝟐𝟐  using Eq. (12). 

Mode 
Element size (mm) 

Analytical 
2.5 5 10 20 30 

1 1st Bending Y 0.2506 0.2510 0.2519 0.2537 0.2552 0.25 
2 1st Bending X 0.2508 0.2513 0.2522 0.2539 0.2556 0.25 
3 2nd Bending Y 0.2532 0.2538 0.2549 0.2570 0.2592 0.25 
4 2nd Bending X 0.2549 0.2555 0.2566 0.2587 0.2609 0.25 
5 3rd Bending Y 0.2575 0.2582 0.2596 0.2623 0.2654 0.25 
6 3rd Bending X 0.2614 0.2622 0.2636 0.2662 0.2692 0.25 
7 1st Torsion 0.2953 0.3177 0.3626 0.4354 0.5568 --- 
8 4rd Bending Y 0.2636 0.2645 0.2664 0.2699 0.2741 0.25 

 

Due to the fact that the mass-density of the system is constant, the ratio 𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  is the same for all the 
modes and equal to the total mass, i.e.  𝒎𝒎𝝍𝝍

𝑳𝑳𝝍𝝍
𝟐𝟐 = 𝑀𝑀𝑇𝑇  = 15.7 𝑘𝑘𝑘𝑘. This ratio is shown in Table 5 and as 

expected, the numerical ratios  𝒎𝒎𝝍𝝍

𝑳𝑳𝝍𝝍
𝟐𝟐   approaches the analytical values for small size of the elements. 

 

Table 5. Ratio 𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐 . 

Mode 
Element size (mm) 

Analytical 
2.5 5 10 20 30 

1 1st Bending Y 15.669 15.643 15.586 15.472 15.369 15.7 
2 1st Bending X 15.672 15.640 15.583 15.476 15.370 15.7 
3 2nd Bending Y 15.666 15.628 15.559 15.428 15.275 15.7 
4 2nd Bending X 15.664 15.626 15.558 15.429 15.294 15.7 
5 3rd Bending Y 15.657 15.614 15.528 15.363 15.147 15.7 
6 3rd Bending X 15.657 15.608 15.524 15.369 15.192 15.7 
7 1st Torsion 14.507 13.484 11.813 9.849 7.690 15.7 
8 4rd Bending Y 15.647 15.593 15.480 15.269 14.985 15.7 

 

A better estimation of the lengths can be obtained with a linear extrapolation of the results obtained 
with two different sizes or fitting the results corresponding to several models meshed with different size 
of elements. If the lengths of Table 4 obtained with sizes 5 and 10 mm are extrapolated with a straight 
line to zero size, the results presented in Table 6 are obtained, where it can be observed that the total 
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mass 𝑀𝑀𝑇𝑇 is estimated with an error less than 0.05%. The results obtained fitting all the results of Table 
6 with a straight line are also shown in the same table, achieving again a good accuracy. The 
extrapolation of the results corresponding to the torsional mode are shown in Figure 3. 

 

Table 6. Length  𝑳𝑳𝝍𝝍𝟐𝟐  and ratio 𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  by extrapolation. 

Mode 

Sizes 

 5 mm and 10 mm 
Linear fit of all values in 

Table 4 

𝑳𝑳𝝍𝝍𝟐𝟐  𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  𝑳𝑳𝝍𝝍𝟐𝟐  𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  

1 1st Bending Y 0.2501 15.7005 0.2502 15.6927 
2 1st Bending X 0.2504 15.6969 0.2504 15.6941 
3 2nd Bending Y 0.2527 15.6973 0.2527 15.6952 
4 2nd Bending X 0.2544 15.6946 0.2544 15.6929 
5 3rd Bending Y 0.2568 15.6998 0.2568 15.7004 
6 3rd Bending X 0.2608 15.6929 0.2607 15.6939 
7 1st Torsion 0.2728 15.7034 0.2690 15.9262 
8 4rd Bending Y 0.2626 15.7068 0.2626 15.7046 

 
Figure 3. Calculation of the squared length of the torsional mode. Red circles: data from Table 4. Black line: fit 

using data of 5 and 10 mm. Green line: Linear fit using all the results. 

 

2.2. A 3D beam model  

The cantilever beam was also meshed with quadratic beam elements B32 with a length of 2.5 mm (801 
nodes) and 1.25 mm (1601 nodes), obtaining very similar modal parameters. The natural frequencies 
are shown in Table 2 and the modal masses (mode shapes normalized to the largest translational 
component equal to unity) are shown in Table 7. The length of the mode shapes was estimated with Eq. 
(12) using only the translational components. The ratio 𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  is obtained with an error less than 1.6% 
for all the modes. Thus, beam models can be used successfully to estimate the length of the mode shapes 
with low computational cost. 

With this model, all the translational components of the torsional mode are zero, and ABAQUS 
normalize this mode shape to the largest rotation equal to unity. This means that the squared length of 
the torsional mode (𝐿𝐿𝜃𝜃2 ) is dimensionless and the modal mass is given in units of 𝑘𝑘𝑘𝑘 ∙ 𝑛𝑛2, which can 
also be obtained analytically with the expression:  
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𝑛𝑛𝜃𝜃 = 𝐼𝐼𝑀𝑀𝐿𝐿𝜃𝜃2  (19)  

Where 𝐼𝐼𝑀𝑀 is the mass moment inertia of the structure with respect to the longitudinal axes of the beam, 
which for a rectangular section of dimensions 𝐺𝐺 × 𝑏𝑏 is given by: 

𝐼𝐼𝑀𝑀 = 𝑀𝑀𝑇𝑇
(𝐺𝐺2 + 𝑏𝑏2)

12
 

 
(20)  

For this beam, Eq. (20) gives  𝐼𝐼𝑀𝑀=0.0054  𝑘𝑘𝑘𝑘𝑛𝑛2 

From the finite element model, it has been obtained that 𝐿𝐿𝜃𝜃2 = 0.5 and 𝑛𝑛𝜃𝜃 = 2.682 × 10−3 𝑘𝑘𝑘𝑘𝑛𝑛2, 
which gives a ratio 𝑚𝑚𝜃𝜃

𝐿𝐿𝜃𝜃
2 = 0.0054  𝑘𝑘𝑘𝑘𝑛𝑛2. 

The modal masses and the squared lengths of the torsional mode, obtained with the 3D model and with 
the beam model, are related by the expression: 

𝑀𝑀𝑇𝑇 =
𝑛𝑛
𝐿𝐿2

=
𝑛𝑛𝜃𝜃

𝐿𝐿𝜃𝜃2
1

(𝐺𝐺2 + 𝑏𝑏2)
12

 (21)  

 

Table 7. Length 𝑳𝑳𝝍𝝍𝟐𝟐 , modal mass 𝒎𝒎𝝍𝝍 and ratio 𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  for the bending modes of the beam model. 

Mode 

Beam model B32 

2.5 mm (801 nodes) 

Beam model B32 

1.25 mm (1601 nodes) 

𝑳𝑳𝝍𝝍𝟐𝟐  
[−] 

𝒎𝒎𝝍𝝍 
[𝑘𝑘𝑘𝑘] 

𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  
[𝑘𝑘𝑘𝑘] 

𝑳𝑳𝝍𝝍𝟐𝟐  
[−] 

𝒎𝒎𝝍𝝍 
[𝑘𝑘𝑘𝑘] 

𝒎𝒎𝝍𝝍/𝑳𝑳𝝍𝝍𝟐𝟐  
[𝑘𝑘𝑘𝑘] 

1 1st Bending Y 0.2505 3.9309 15.6922 0.2504 3.9309 15.6985 
2 1st Bending X 0.2507 3.9342 15.6929 0.2505 3.9342 15.7054 
3 2nd Bending Y 0.2522 3.9710 15.7454 0.2520 3.9710 15.7579 
4 2nd Bending X 0.2532 3.9967 15.7848 0.2531 3.9967 15.7910 
5 3rd Bending Y 0.2549 4.0369 15.8372 0.2548 4.0369 15.8434 
6 3rd Bending X 0.2575 4.0978 15.9138 0.2573 4.0978 15.9262 
7 1st Torsion -- -- --- --- --- --- 
8 4rd Bending Y 0.2590 4.1317 15.9525 0.2588 4.1317 15.9648 

 

3. A CANTILEVER BEAM MADE OF STEEL AND CONCRETE  

A three-dimensional cantilever beam with the same dimensions as those used in section 2, and made of 
steel and concrete is considered in this section (see Figure 4a). The encastre boundary condition is 
placed at the end of the steel part. The following material properties were assumed for the steel: mass-
density 𝜚𝜚 = 7850 𝑘𝑘𝑘𝑘/𝑛𝑛3, Young’s modulus 𝐸𝐸 = 210 𝐺𝐺𝐺𝐺𝐺𝐺, and Poisson ratio 𝜈𝜈 = 0.3. The material 
properties assumed for the concrete were following: mass-density 𝜚𝜚 = 2400 𝑘𝑘𝑘𝑘/𝑛𝑛3, Young’s modulus 
𝐸𝐸 = 20 𝐺𝐺𝐺𝐺𝐺𝐺, and Poisson ratio 𝜈𝜈 = 0.18.  

The beam was meshed with twenty-node hexahedral elements (C3D20R) with an approximate global 
size of 0.0025m (see Fig. 4b). The natural frequencies and modal masses (mode shapes normalized to 
the largest component equal to unity) corresponding to the first eight modes are presented in Table 8. 
The total mass of the beam is 𝑀𝑀𝑇𝑇 = 10.25 𝑘𝑘𝑘𝑘, distributed as 𝑀𝑀𝑠𝑠 = 7.85 𝑘𝑘𝑘𝑘 and 𝑀𝑀𝑐𝑐 = 2.4 𝑘𝑘g, where 
subindexes ‘s’ and ‘c’ indicate steel and concrete respectively. 
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The partial and the total squared lengths estimated with Eq. (12) are shown in Table 8. The partial 
lengths and the total length are related by the equation [2]: 

𝐿𝐿𝐸𝐸2 =
𝑉𝑉𝑠𝑠𝐿𝐿𝐸𝐸𝑠𝑠

2 + 𝑉𝑉𝑐𝑐𝐿𝐿𝐸𝐸𝑐𝑐
2

𝑉𝑉𝑇𝑇
 (1)  

In this case 𝑉𝑉𝑠𝑠 = 𝑉𝑉𝑐𝑐 = 𝑉𝑉𝑇𝑇/2 and Eq. (22) leads to: 

𝐿𝐿𝐸𝐸2 =
𝐿𝐿𝐸𝐸𝑠𝑠
2 + 𝐿𝐿𝐸𝐸𝑐𝑐

2

2
 (2)  

The lengths of the mode shapes were calculated with models using size elements of 5 and 10 mm, and 
then extrapolated to zero size (see Table 8). 

On the other hand the apparent mass is given by: 

𝑀𝑀𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑇𝑇
𝜌𝜌𝑠𝑠𝐿𝐿𝐸𝐸𝑠𝑠

2 + 𝜌𝜌𝑐𝑐𝐿𝐿𝐸𝐸𝑐𝑐
2

𝐿𝐿𝐸𝐸𝑠𝑠
2 + 𝐿𝐿𝐸𝐸𝑐𝑐

2  (3)  

With respect to the modal masses of the structure, they can be calculated as the sum of the contributions 
of the steel and the concrete parts by: 

𝑛𝑛 = 𝑀𝑀𝑠𝑠𝐿𝐿𝐸𝐸𝑠𝑠
2 + 𝑀𝑀𝑐𝑐𝐿𝐿𝐸𝐸𝑐𝑐

2  (4)  

The modal masses and the apparent masses calculated with Eqs. (25) and (24) are shown in Table 9. 

 

 
Figure 4. a) 3D concrete-steel model; b) mesh with element size of 0.0025 m 
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Table 8. Natural frequencies, modal masses and length of the concrete-steel the cantilever beam. 

Mode Natural frequencies 
[Hz] Modal mass 

Length 
Steel 𝐿𝐿𝐸𝐸𝑠𝑠

2  Concrete 𝐿𝐿𝐸𝐸𝐶𝐶
2  Total 𝐿𝐿𝐸𝐸2  

1 1st Bending Y 47.81 0.93 0.0089 0.3583 0.1836 
2 1st Bending X 59.66 0.93 0.0089 0.3583 0.1836 
3 2nd Bending Y 148.44 1.32 0.0879 0.2625 0.1752 
4 2nd Bending X 184.83 1.32 0.0892 0.2625 0.1758 
5 3rd Bending Y 440.37 0.90 0.0382 0.2542 0.1462 
6 3rd Bending X 542.98 0.91 0.0382 0.2583 0.1483 
7 1st Torsion 743.98 0.79 0.0073 0.3076 0.1705 
8 3rd Bending Y 798.21 1.56 0.1108 0.2917 0.2012 

 

 
Table 9. Contribution of the steel and concrete parts to the modal mass. Apparent mass. 

Mode 
Modal mass 

Apparent mass Steel 
𝑀𝑀𝑇𝑇𝑠𝑠𝐿𝐿𝑠𝑠2 

Concrete
𝑀𝑀𝑇𝑇𝑐𝑐𝐿𝐿𝑐𝑐2  𝑀𝑀𝑇𝑇𝑠𝑠𝐿𝐿𝑠𝑠2 + 𝑀𝑀𝑇𝑇𝑐𝑐𝐿𝐿𝑐𝑐2  

1 1st Bending Y 0.066 0.863 0.929 5.05 
2 1st Bending X 0.066 0.864 0.930 5.05 
3 2nd Bending Y 0.692 0.630 1.322 7.54 
4 2nd Bending X 0.697 0.633 1.330 7.54 
5 3rd Bending Y 0.295 0.606 0.901 6.21 
6 3rd Bending X 0.300 0.617 0.917 6.21 
7 1st Torsion 0.057 0.74 0.796 5.04 
8 3rd Bending Y 0.865 0.698 1.564 7.79 

 

4. CONCLUSIONS 

In constant mass-density systems, the modal mass is equal to the product between the total 
mass of the structure and the length squared. If the mass-density is not constant, the modal 
mass is equal to the product between an apparent mass (different for each mode) and the length 
squared. The length of the mode shapes can be useful to validate experimental modal masses 
and to know how the mass is distributed in the structure. The experimental mode shapes can 
be expanded to the unmeasured DOF’s using a numerical model, and the length can be 
estimated using eq.(16). Alternatively, the length of the experimental mode shapes can be 
estimated using the transformation matrix T and the length of the numerical mode shapes,. 
In this paper, the accuracy obtained in the length of the numerical mode shapes of two 
cantilever structures, one with constant mass-density and the second one made of steel and 
concrete, is analyzed. The length of numerical mode shapes can be estimated with a good 
accuracy using eq.(12) if small 3D elements of equal size are used to mesh the model.  
Both cantilever models were meshed with 3D elements C3D20R, and the lengths of the mode 
shapes were estimated with eq. (12). The results corresponding to models of different size, 
were linearly extrapolated to zero size, allowing to estimate the length of all the modes with a 
very good accuracy.  
The structures were also meshed with beam elements B32 and the length of the mode shapes 
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were calculated with eq.(12) considering only the translational DOF’s (the contribution of the 
rotations can be neglected if the elements are small). It has been demonstrated that beam models 
can be used successfully to estimate the length of the mode shapes with low computational cost. Beam elements 
can also be used to calculate the length of the torsional modes, considering only the rotational 
DOF’s. 

ACKNOWLEDGEMENTS 

The financing support given by the Spanish Ministry of Education through the project MCI-20-
PID2019-105593GB-I00/AEI/10.13039/501100011033 is gratefully appreciated. 

REFERENCES 

[1] Dianat, S. A., & Saber, E. (2009). Advanced Linear Algebra for Engineers with MATLAB. CRC 
Press. 

[2] Aenlle, M., Juul, M., & Brincker, R. (2020). Modal Mass and Length of Mode Shapes in Structural 
Dynamics. Shock and Vibration, 2020, 1-16. https://doi.org/10.1155/2020/8648769 

[3] Leissa, A. W., & Qatu, M. S. (2011). Vibrations of Continuous Systems. McGraw-Hill 

[4] Rao, S. S. (2007). Vibration of Continuous Systems. John Wiley & Sons. 

[5] Brincker, R., Skafte, A., López-Aenlle, M., Sestieri, A., D’Ambrogio, W., & Canteli, A. (2014). 
A local correspondence principle for mode shapes in structural dynamics. Mechanical Systems and 
Signal Processing, 45(1), 91–104. https://doi.org/10.1016/j.ymssp.2013.10.025 

[6] Sestieri, A. (2000). Structural dynamic modification. Sadhana, 25(3), 247-259. 

[7] ABAQUS UNIFIED FEA. Dassault Systems. 

[8] Clough R.W. and Penzien J. (1993) Dynamics of structures. New York: McGraw-Hill 

 

192



 
 

PRECISE AZIMUTH AND ANGULAR SPEED 
ESTIMATION FOR WIND TURBINE SHAFTS BY 
MEANS OF IMU 

Miroslav Zivanovic1, Xabier Iriarte2, and Aitor Plaza3, and Alfonso Carlosena4 

1 Dr. Zivanovic, Public University of Navarre, miro@unavarra.es. 
2 Dr. Iriarte, Public University of Navarre, xabier.iriarte@unavarra.es. 
3 Dr. Plaza, Public University of Navarre, aitor.plaza@unavarra.es.  
4 Dr. Carlosena, Public University of Navarre, alfonso.carlosena@unavarra.es 

ABSTRACT 

This paper presents the design of a recursive filter based on the kinematic model of a wind turbine to 
estimate with a high degree of accuracy its azimuth (angular position of the main shaft). The design of 
the filter is conditioned by two requirements to be fulfilled. On the one hand, the integrity of the machine 
must be preserved, and its original design must not be modified, and, on the other hand, the design must 
be valid for any type of horizontal axis machine regardless of its geometrical properties and where the 
sensor is placed. The designed filter estimates the azimuth from the data measured by an accelerometer 
located on the same axis. In addition, the filter is able to estimate other variables such as the angular 
speed and acceleration, radius and tilt of the shaft. Due to the nonlinear nature of the equations 
describing the wind turbine kinematics, the so-called Extended Kalman Filter has been implemented. 
This procedure has been validated by means of both simulated and experimental data. 

Keywords: Conference, Operational, Modal, Analysis 

1. INTRODUCTION 

Wind turbines that were installed in Europe in the 1990s are reaching the end of their lifetime, but 
instead of repowering them, developers are opting to extend the life of these machines to maximize the 
benefits they provide. This decision is strongly conditioned by the trade-off between maintenance costs 
and energy production benefits. In this context, the choice of an appropriate maintenance strategy is 
crucial to be able to predict in advance the remaining lifetime of the components in order to facilitate 
the scheduling of maintenance tasks and reduce the non-production time associated with them. Thus, 
condition-based monitoring [1] is postulated as the best strategy, monitoring the machines to know their 
condition and foresee well in advance any maintenance operation. 

193



When a predictive maintenance strategy for a machine or component is proposed, it will be necessary 
to determine a periodic measurement procedure to get information on the state of the machine or 
component. Therefore, depending on the components to be monitored and the types of failure to be 
detected, it will be necessary to install additional sensors to those that were included in the design of 
the machine and were installed at the time of its construction. The possibility to take certain 
measurements will sometimes be conditioned to the design of the machine itself. In some situations, it 
will not be possible to use sensors that, if their installation had been decided at the time of design, would 
have been optimal for the measurement of certain variables. In these circumstances, the engineer 
performing the experiments for predictive maintenance will need tools that make it possible to perform 
the measurements quickly, easily and robustly, without having to dedicate specific sensors and 
acquisition equipment to each machine and without having to abandon sensors and measurement 
systems once the measurement campaign has been carried out. 

The measurement of the Low Speed Shaft (LSS) azimuth is an important variable in wind turbine 
monitoring since many types of faults correlate with a specific phase of this angle. For example, in [2] 
wind turbine component loads are calculated in order to improve their life forecasting and all relevant 
variables are analysed versus the azimuth. This way, the engineer can identify the type of fault knowing 
the phase of the signals measured in other sensors such as accelerometers and strain gauges. In addition, 
knowledge of this variable is essential to be able to calculate loads on a basis fixed to the nacelle when 
measurements are made on a fixed basis to the LSS, which is required by the current standard for load 
calculation IEC 61400-13 2015 [3]. Although new wind turbines usually include a sensor that provides 
a measurement of this angle, in wind turbines that are reaching the end of their useful life, the 
measurement of the LSS rotation angle is not one of the variables that is monitored by a SCADA system. 
There are several ways in which this angle can be estimated based on other measurements, but all of 
them present implementation difficulties or lack sufficient accuracy. 

One possible method to estimate the azimuth is based on using the gear ratio of the gearbox and the 
speed measurement of the High Speed Shaft (HSS). This solution has the disadvantage that the 
integration error amplifies linearly with time, and that this must be eliminated by using an external 
sensor that gives information of each zero crossing of the LSS. This could be an inductive sensor using 
some metallic element characteristic of the machine to consistently detect a phase value of the azimuth. 
A drawback of this method is that the integration error will propagate equally over an entire lap from 
the inductive sensor signal, giving larger and larger errors until it is suddenly corrected when it passes 
through 0 again, resulting in a notoriously discontinuous azimuth estimate at zero crossings. This 
solution may not be accurate enough for some applications. Another major drawback of the method is 
its difficult installation. On the one hand, metallic elements of the wind turbine (hub joint bolts) will be 
used as reference elements, so the installation will depend on the structure of the machine. In addition, 
external elements will have to be attached to the machine. When the measurement campaign is over 
and these sensors are removed, they may not be useful in the sensing of another machine. On the other 
hand, the need to use SCADA measurements of the machine would greatly complicate the acquisition 
of the measurements, since the SCADA measurements would have to be synchronized with those of 
the additional sensors placed to monitor the machine. 

Extensive research has been conducted to investigate full 3-degree-of-freedom orientation tracking 
using inertial/magnetic sensor modules. Common application, very far from wind turbine azimuth 
estimation, are head-tracking [4, 5] and aircraft attitude-determination [6]. In [7], for example, a real-
time estimation of projectile roll angle and roll rate are performed. These algorithms use not only 
acceleration data but usually gyroscopic and geomagnetic signals too. Although some of these 
approaches could be used for a single rotation angle estimation, they would not perform optimally for 
the estimation of a single degree-of-freedom problem and some sensor signals might be unnecessary. 
Moreover, the applications of these algorithms are very little related to the estimation of the angle of 
rotation of the LSS of a wind turbine.  

Numerous papers related to wind turbine applications have been published in which the angular speed 
of the LSS is estimated. In [8], the instantaneous angular speed of the LSS is estimated using vibration 
signals for tacho-less order tracking under speed variation operating conditions. In [9], acceleration 
vibration signals are also used to estimate the instantaneous angular speed of every single shaft of the 
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gearbox. In [10] a two-step method for instantaneous angular speed estimation is proposed which 
accounts for large speed fluctuations and is also based on vibration signals. These articles manage to 
estimate the angular speed of the LSS but there does not appear to be many works in which the azimuth 
is estimated based on signals other than tachometer or directly from an encoder. 

2. METHODOLGY 

Figure 1 shows the scheme of a triaxial accelerometer placed on the periphery of the LSS. The sensor 
primarily measures the acceleration of gravity on a base fixed to the axis, which rotates precisely the 
angle to be estimated. In addition to gravity, the accelerometers will also measure the normal and 
tangential acceleration components of the point where the sensor is placed, including the components 
related to the translation of the nacelle caused by tower deflection.  

 
Figure 1. Scheme of the LSS and accelerometer 

The objective of this paper is to design an algorithm that estimates the azimuth of the LSS based on 
these acceleration signals. Moreover, this algorithm must be robust to accelerometer placement errors, 
it does not need to know the geometry of the shaft (particularly its radius) and must not be affected by 
the tilt of the shaft itself. Following the standard wind turbine signal measurement, 600 seconds signals 
will be used to estimate the azimuth off-line. Finally, since it is intended to measure the acceleration of 
gravity, the accelerometer must be capable of measuring acceleration down to 0 Hz. With these 
requirements, the design of an extended state observer of the turbine based on Kalman filters will be 
proposed [11]. 

2.1. Signal model 

Under these conditions the signals of the accelerometer will be calculated based on a kinematic model 
of the shaft. The only degree of freedom of the model will be the rotation of the shaft with respect to its 
own axis (θ), i.e. the so-called azimuth. However, the measured signal will depend on two more 
parameters: the radius of the shaft (R) and the tilt angle of the shaft (α). The signal for the three axes of 
the accelerometer at the nth time instant will thus be: 

Ax,n = −g sinαn + γx,n (1a) 

Ay,n = g cosαn sinθn − Rθ̈n + γy,n (1b) 

Az,n = g cosαn cosθn − Rθ̇n2 + γz,n (1c) 

 

where g  is the acceleration of the gravity and Ax,  Ay and Az are the accelerations measured by the 
sensor in its own base. Moreover, γi,nwill be the random variables that take into account the measuring 
noise  and the translational accelerations of the nacelle. As these expressions are nonlinear with respect 
to the azimuth an Extended Kalman Filter (EKF) approach will be used [12]. 
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2.2. System model 

In order to obtain the process equations for the EKF, we must determine which variables will form the 
state vector and how they are going to evolve with respect to time. In this paper the state variables will 
be θ, θ̇, θ̈, R, and α. The evolution of the first two will be modelled as a uniformly accelerated movement 
while the last three of them will be modelled as an autoregressive process of order 1, i.e. AR(1). Thus, 
the equations representing such system are: 

 

θn+1 = θn + θ̇nΔt +
1
2
θ̈nΔt2 + γθ,n (2a) 

θ̇n+1 = θn + θ̈nΔt + γθ̇,n (2b) 

θ̈n+1 = k θ̈n + γθ̈,n (2c) 

Rn+1 = k Rn + γR,n (2d) 

αn+1 = k αn + γα,n (2e) 

 

where γ𝑖𝑖,𝑛𝑛 are random variables following Gaussian probability distributions with 0 mean. On the other 
hand, the model parameter |𝑘𝑘| < 1 controls the smoothness in the output of a stable filter. Note that, in 
this case, the process equations are linear with respect to the state variables.  

2.3. Estimation of the azimuth and angular velocity 

Using sets of Equations (1) and (2), we have everything we need to create an EKF that iteratively 
estimates the state variables. 

Although variable 𝑅𝑅 is a certain constant in the system, for the robustness of the model it has been 
considered into the state vector. This way, the user does not need to know precisely the radius of the 
shaft as the filter will estimate it. This makes the filter robust with respect to this kind of uncertainties.   

On the contrary, the α variable will be unknown and will experience significant variations with respect 
to its mean value. These variations will be taken into account by the model and will make it more robust 
so that the problem can be addressed without the need to know its value a priori. 

3. RESULTS AND DISCUSSION 

In this section the performance of the developed algorithm is evaluated using data from two very 
different sources. On the one hand, acceleration data from a simulated wind turbine model is used. In 
this way the true values of the azimuth and angular speed will be available while the acceleration data 
while the signal from the virtual accelerometers will have all the richness that will be found in the 
experimental measurements. On the other hand, the algorithm is evaluated using accelerations measured 
experimentally in the LSS of an actual 3MW wind turbine. Although in this second system it will not 
be possible to validate the accuracy of the algorithm (since the true value of the azimuth will not be 
available) it will be possible to verify that the algorithm behaves qualitatively as well as in the simulated 
case.   

3.1. Wind turbine simulation in OpenFAST 

In order to evaluate the algorithm with realistic simulation data, the OpenFAST software [13] has been 
used. This is a free software developed by National Renewable Energy Laboratory (NREL) which is 
certified for the design of on-shore as well as off-shore wind turbines. This software is a standard for 
the design of aerodynamic, aeroelastic, structural and control system components and simulations and 
allows very realistic simulations under different wind turbine operating conditions. It can determine the 
position, velocity and acceleration at various points of the machine.  
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The generic OpenFAST wind turbine model consists of 24 degrees of freedom (DOF). The model 
allows specifying the structural properties (stiffness, damping, inertias) of the tower, drive train and 
blades, as well as the geometrical and aerodynamic properties of the tower and blades. In addition, it 
allows the placement of virtual sensors (accelerometers, IMU-s and deformation sensors) at arbitrary 
locations on the tower, powertrain and blades. This allows obtaining information of these variables in 
the simulation for off-line post-processing.  

The specific 5 MW onshore wind turbine [14] is simulated in this work consists of a 3-bladed 126 m 
diameter wind rotor on an 87.6 m high tower. This wind turbine model, also developed by NREL, has 
been widely used in many research projects. 

3.2.  Results for the OpenFAST model 

As a virtual experiment, a 600 s simulation has been performed, for 6 𝑚𝑚/𝑠𝑠 turbulent wind where the 
rotation speed oscillates between 0.75 and 0.95 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠.  The actual values for the whole simulation are 
shown on Figure 2. 

 

 
Figure 2. Operation conditions in the simulation 

 

Once the OpenFAST simulation results are available, the different parameters of the EKF are set as 
follows: the constant for the autoregressive model has been set to 𝑘𝑘 = 1 − 10−6 and the process 
variance matrix is determined accordingly; the synthetic accelerations signals were corrupted with 
Gaussian noise (γ𝑥𝑥,γ𝑦𝑦,γ𝑧𝑧) of mean 0 and standard deviation of 0.25 𝑚𝑚/𝑠𝑠2; the measuring variance 
matrix was determined accordingly and all data was collected at a constant rate of  Δ𝑡𝑡 = 1/160 𝑠𝑠. The 
acceleration measurements for this case study are shown in Figure 3. 
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Figure 3. Virtual acceleration measurements 

 

As shown in Figure 2, the wind speed varies significantly along the analised period of time (due to its 
turbulent nature) and the rotor speed varies up to 20%. Despite these difficult conditions, the algorithm 
behaves adequately and is able to capture the angular speed variations, as shown in Figure 4.  Likewise, 
the error of the Kalman filter in the azimuth estimation remains around 0.5𝑜𝑜. Compared to the direct 
application of the arctangent function to the acceleration data (θ� = 𝑟𝑟𝑡𝑡𝑟𝑟𝑎𝑎�𝐴𝐴𝑧𝑧,𝐴𝐴𝑦𝑦�) the developed filter 
performs much better with an error around 10 times smaller. 

 

 
Figure 4. From top to bottom: azimuth estimations and real value, difference between the estimations and real 

azimuth, estimated and real rotor speed. 
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Finally, Figure 5 shows the estimated α and 𝑅𝑅. The results show that the estimation of these variables 
is consistent with the assumptions made in the modeling process behaving nearly as constants. 

 
Figure 5. Estimation of the shaft radius 𝑹𝑹 and the tilt angle 𝛂𝛂 

 

3.3. Results for the actual wind turbine 

The set of real-world data used to validate the proposed method corresponds to accelerations measured 
in the LSS of a 3MW wind turbine. It contains standard 600 𝑠𝑠 records, sampled at 20 milliseconds. The 
approximate characteristics of the 3-bladed turbine are 126 m diameter rotor and 120 m high tower. The 
acceleration signals measured are shown in Figure 6. It can be appreciated that the signals are very 
similar to those of the simulated case.  

 

 
Figure 6. Experimental acceleration measurements 

 

In Figure 7 the estimations of the azimuth and the rotor speed are shown. The characteristic bumps of 
the arctangent method are evident while the filter provides a smoother estimation. These bumps are due 
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to the significant contribution of the normal acceleration to the calculation of the azimuth as the 
arctangent of the ratio of accelerations. The rotor speed estimation shows a nearly constant value with 
an additional contribution of the first harmonic of the rotor rotation. 

 

 
Figure 7. Estimation of the azimuth for atan method and for the kalman filter 

Finally, Figure 8 shows the estimated radius and tilt of the shaft. The first one shows a clear tendency 
to a stationary value while the second one shows oscillations of greater amplitude that could be due to 
actual tilt variations. The higher frequency content of the tilt signal also contains a significant 
contribution of the first harmonic of the rotor rotation. 

 
Figure 8. Estimation of the shaft radius 𝑹𝑹 and the tilt angle 𝛂𝛂 

4. CONCLUSIONS 

A simple and efficient Kalman filter has been developed for the accurate estimation of the azimuth and 
rotor speed of the LSS of a wind turbine. In the simulation case study with OpenFAST, the algorithm 
has demonstrated its ability to estimate with relative accuracy both variables, comparing the results with 
the real value of the simulation and obtaining errors below 0.5𝑜𝑜 in the estimation of the azimuth and 
around 1% in the estimation of the rotor speed. The Kalman filter parameters have been adjusted 
satisfactorily since the tracking of both variables is relatively smooth. 
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Regarding the results obtained for the estimation with experimental data, it is not possible to make a 
reliable comparison due to the lack of real values of the variables to be estimated. Comparing the 
estimations of the azimuth by the filter and the direct calculation by means of the arctangent, the 
shortcomings of the latter can be appreciated and it can be seen that the estimation of the azimuth is 
much more accurate using the filter presented in this article. 

Finally, it should be noted that the designed filter can estimate azimuth and rotor speed in real time due 
to its recursive character and its low computational cost. In addition, it is robust to the unknown radius 
at which the accelerometer is placed and is able to take into account variations of the tilt angle of the 
axis. These characteristics make it very suitable for use in predictive maintenance operations where 
azimuth and rotor speed estimations are desired without the need to access SCADA measurements. 

5. REFERENCES 
[1] Márquez, F. P. G., Tobias, A. M., Pérez, J. M. P., & Papaelias, M. (2012). Condition monitoring 

of wind turbines: Techniques and methods. Renewable energy, 46, 169-178. 
[2] Rommel, D. P., Di Maio, D., & Tinga, T. (2020). Calculating wind turbine component loads 

for improved life prediction. Renewable energy, 146, 223-241. 
[3] International-Electrotechnical-Commission. (2015). IEC 61400-13: Wind turbines-Part 13: 

Measurement of mechanical loads. International Electro-technical Commission (IEC), 
Geneva. 

[4] Foxlin, E. (1996, March). Inertial head-tracker sensor fusion by a complementary separate-bias 
Kalman filter. In Proceedings of the IEEE 1996 Virtual Reality Annual International 
Symposium (pp. 185-194). IEEE. 

[5] Foxlin, E., Harrington, M., & Alshuler, Y. Miniature 6DOF inertial for track HMDs. Proc. 
SPIE Helmet, Head-Mounted Displays III, 214-228. 

[6] Gebre-Egziabher, D., Elkaim, G. H., Powell, J. D., & Parkinson, B. W. (2000, March). A gyro-
free quaternion-based attitude determination system suitable for implementation using low cost 
sensors. In IEEE 2000. Position Location and Navigation Symposium (Cat. No. 00CH37062) 
(pp. 185-192). IEEE. 

[7] Gao, L., Zhang, Y., Zhang, X., & Xue, Y. (2020). A real-time estimation method of roll angle 
and angular rate based on geomagnetic information. Mathematical Problems in Engineering, 
2020. 

[8] Wang, Y. I., Tang, B., Meng, L., & Hou, B. (2019). Adaptive estimation of instantaneous 
angular speed for wind turbine planetary gearbox fault detection. IEEE Access, 7, 49974-
49984. 

[9] Peeters, C., Leclere, Q., Antoni, J., Guillaume, P., & Helsen, J. (2017, May). Vibration-based 
angular speed estimation for multi-stage wind turbine gearboxes. In Journal of Physics: 
Conference Series (Vol. 842, No. 1, p. 012053). IOP Publishing. 

[10] Urbanek, J., Barszcz, T., & Antoni, J. (2013). A two-step procedure for estimation of 
instantaneous rotational speed with large fluctuations. Mechanical Systems and Signal 
Processing, 38(1), 96-102. 

[11] Ritter, B. A. S. T. I. A. N., Schild, A. X. E. L., Feldt, M. A. T. T. H. I. A. S., & Konigorski, U. 
L. R. I. C. H. (2016, September). The design of nonlinear observers for wind turbine dynamic 
state and parameter estimation. In Journal of Physics: Conference Series (Vol. 753, No. 5, p. 
052029). IOP Publishing. 

[12] Grewal, M. S., & Andrews, A. P. (2014). Kalman filtering: Theory and Practice with MATLAB. 
John Wiley & Sons. 

[13] OpenFAST. Open-source wind turbine simulation tool, available at 
http://github.com/OpenFAST/OpenFAST/ (2022). 

[14] Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW reference 
wind turbine for offshore system development (No. NREL/TP-500-38060). National 
Renewable Energy Lab.(NREL), Golden, CO (United States). 

201



 

 

 

 

 

 

 

 

M O D A L  S C A L I N G / N E W  A P P L I C A T I O N S  I N  O M A  

 

202



 
 

A PHYSICAL INTERPRETATION OF THE MODAL 
MASS IN STRUCTURAL DYNAMICS  

M. Aenlle1, R. Brincker 2, N. García-Fernández3, F. Pelayo4 

1 PhD, University of Oviedo, Spain, aenlle@uniovi.es 
2 PhD, Technical University of Denmark, runeb@byg.dtu.dk 
3 PhD Student, University of Oviedo, garciafnatalia@uniovi.es 
4 Professor, University of Oviedo, fernandezpelayo@uniovi.es 
 

ABSTRACT 

The magnitude and the units of the modal mass of a mode shape is not unique but it depends on the 
normalization method used to define the mode shape. Moreover, the  magnitude can also depend 
depends on the number of degrees of freedom (DOFs) used to discretize the model. Recently, a new 
definition of the length of a mode shape, which depends on the mode shape and how the volume is 
distributed in the structure, has been proposed by the authors. This definition  allows a better definition 
of the modal mass, which is physically meaningful and does not depend on the number of DOFs of a 
discrete model. With this new definition, the modal mass in constant mass-density systems is equal to 
the product between the total mass of the structure and the length squared. This property can be used 
advantageously to validate the modal masses estimated with the techniques proposed by different 
authors to determine the modal masses in operational modal analysis. 

In this paper, these new concepts are explained by analytical, numerical, and experimental examples. 
The model masses of an experimental steel beam structure were estimated by experimental modal 
analysis and validated with the equations proposed in this paper. Moreover, the modal masses and 
lengths of a rigid beam supported on two springs, were calculated using different sets of DOF’s and 
different types of normalization, demonstrating that the same mass normalized mode shapes are 
obtained. 

 

 

Keywords: Modal mass, Normalization of mode shapes, apparent mass 
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1. INTRODUCTION 

A mode shape contains information of both the deflection shape and the length of the vector. The length 
(also denoted in algebra as Euclidean norm, Euclidean length or 𝐿𝐿2norm) of an arbitrary normalized 
mode shape 𝝍𝝍  is given by [1]: 

𝐿𝐿𝐸𝐸𝐸𝐸 = �𝝍𝝍𝑇𝑇 ∙ 𝝍𝝍 (1)  

A mode shape is said to be normalized to the unit length when its length 𝐿𝐿𝐸𝐸𝐿𝐿 is unity. The mode shape 
normalized to the unit length, hereafter denoted 𝝍𝝍𝑳𝑳, is related to the mode shape 𝝍𝝍 by: 

𝝍𝝍𝑳𝑳 =
𝝍𝝍

�𝝍𝝍𝑇𝑇 ∙ 𝝍𝝍
=

𝝍𝝍
𝐿𝐿𝐸𝐸𝐸𝐸

 (2)  

 

In structural dynamics the modal mass of a mode shape 𝝍𝝍 is defined as [2,3]: 

𝑚𝑚𝐸𝐸 = 𝝍𝝍𝑻𝑻𝑴𝑴𝝍𝝍     (3)  

Where 𝑴𝑴 is the mass matrix.  

A mode shape is said to be mass normalized, hereafter denoted 𝝓𝝓, if the modal mass is dimensionless 
unity [2,5], i..e: 

𝑚𝑚𝜙𝜙 = 𝝓𝝓𝑻𝑻𝑴𝑴𝝓𝝓 = 1     (4)  

The  mass normalized mode shape 𝝓𝝓 is related with the mode shapes 𝝍𝝍  and 𝝍𝝍𝑳𝑳 as: 

𝝓𝝓 = 𝝍𝝍 1
√𝑚𝑚

= 𝝍𝝍𝑳𝑳
1

√𝑚𝑚𝐿𝐿
     (5)  

Where 𝑚𝑚 and 𝑚𝑚𝐿𝐿 are the modal masses of 𝝍𝝍  and 𝝍𝝍𝑳𝑳, respectively. 

Eq. (5) can also be expressed as: 

 𝝓𝝓 = 𝝍𝝍𝛼𝛼 = 𝝍𝝍𝑳𝑳𝛼𝛼𝐿𝐿      (6)  

Where 𝛼𝛼 and 𝛼𝛼𝐿𝐿 are scaling factors, related to the modal masses as: 

𝛼𝛼 = 1
√𝑚𝑚

     (7)  

𝛼𝛼𝐿𝐿 = 1

√𝑚𝑚𝐿𝐿
     (8)  

The modal masses and the lengths of the mode shapes are related by:  

𝑚𝑚𝜙𝜙 = 1
𝐿𝐿𝐸𝐸𝜙𝜙2

=
𝑚𝑚𝐸𝐸𝐿𝐿

𝐿𝐿𝐸𝐸𝐸𝐸𝐿𝐿
2 = 1

=
𝑚𝑚𝐸𝐸

𝐿𝐿𝐸𝐸𝐸𝐸2
 (9)  

whereas the scaling factors are related to the lengths as: 

𝐿𝐿𝐸𝐸𝜙𝜙2 = 𝛼𝛼𝐿𝐿2  = 𝛼𝛼𝐿𝐿𝐸𝐸𝐸𝐸2  (10)  
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A mode shape is commonly defined with the deflection shape and the modal mass. However, from eqs. 
(7) to (9) it is inferred that the length of the mode shapes and the scaling factors can be used as an 
alternative to the modal masses. 

The modal mass 𝑚𝑚𝜙𝜙 corresponding to the mass normalized mode shape 𝝓𝝓 is dimensionless unity. From 
eq. (4) it is easily inferred that the  translational  components 𝝓𝝓𝑻𝑻  of the mode shape 𝝓𝝓 have the units 
1/�𝑘𝑘𝑘𝑘  in the international system, whereas the units of the rotational components 𝝓𝝓𝑹𝑹  are 1/�𝑚𝑚�𝑘𝑘𝑘𝑘�.  
On the other hand, the translational components 𝝍𝝍𝑳𝑳𝑻𝑻 of the mode shape 𝝍𝝍𝑳𝑳 are dimensionless and the 
modal mass 𝑚𝑚𝐸𝐸𝐿𝐿 has the unit of 𝑘𝑘𝑘𝑘. With respect to the length of mode shapes, 𝐿𝐿𝐸𝐸𝐸𝐸2  is dimensionless 
whereas 𝐿𝐿𝐸𝐸𝜙𝜙2   has units of  1/𝑘𝑘𝑘𝑘 [6,7]. 

2. CONSTANT MASS DENSITY SYSTEMS  
If the mass-density ρ of a system is constant, eq. (3) can be expressed as [6]: 

𝑚𝑚𝐸𝐸 = 𝝍𝝍𝑻𝑻𝑴𝑴𝝍𝝍 = 𝝆𝝆 𝝍𝝍𝑻𝑻𝑽𝑽𝝍𝝍    (11)  

Where V is the volume matrix. If the total volume of the system is denoted as 𝑉𝑉𝑇𝑇, eq. (11) can also be 
formulated as [6]: 

𝑚𝑚𝐸𝐸 = 𝑀𝑀𝑇𝑇  
𝝍𝝍𝑻𝑻𝑽𝑽𝝍𝝍
𝑉𝑉𝑇𝑇

= 𝑀𝑀𝑇𝑇𝐿𝐿𝐸𝐸2     (12)  

Where the term [6]: 

𝐿𝐿𝐸𝐸2 =
𝝍𝝍𝑇𝑇 𝑽𝑽𝝍𝝍

𝑉𝑉𝑇𝑇
    (13)  

is the length of the mode shape, which depends on the volume of the structure and on the mode shape. 
This new definition of length secures that the length has the same unit as the mode shape. Thus, if the 
mode shape is dimensionless, so is the length. 

Eq.  (13) involves the volume matrix 𝑽𝑽 and it is different to the usual concept of Euclidean length. If a 
structure is discretized with small finite elements of equal volume  Δ𝑉𝑉 eq. (13) can be approximated as: 

𝐿𝐿𝐸𝐸2 ≅
Δ𝑉𝑉∑ 𝝍𝝍𝒌𝒌

𝟐𝟐𝑵𝑵𝑽𝑽
𝒌𝒌=𝟏𝟏

𝑁𝑁𝑉𝑉Δ𝑉𝑉
=
∑ 𝝍𝝍𝒌𝒌

𝟐𝟐𝑵𝑵𝑽𝑽
𝒌𝒌=𝟏𝟏
𝑁𝑁𝑉𝑉

=
𝝍𝝍𝑻𝑻𝝍𝝍
𝑁𝑁𝑉𝑉

   (14)  

And the length 𝐿𝐿𝐸𝐸2  can be related to the euclidean length 𝐿𝐿𝐸𝐸𝐸𝐸2  as: 

𝐿𝐿𝐸𝐸2 ≅
𝐿𝐿𝐸𝐸𝐸𝐸2

𝑁𝑁𝑉𝑉
 (15)  

In finite element models, the components of the mode shapes are commonly known at the nodes of the 
elements, and eq. (14) can also be approximated by means of the expression: 

𝐿𝐿𝐸𝐸2 ≅
𝝍𝝍𝑻𝑻𝝍𝝍
𝑁𝑁

 (16)  

Where N is the number of nodes in the model. 

  

205



3. NON-CONSTANT MASS DENSITY SYSTEMS  
If the structure is constituted by two parts with the two volumes, 𝑉𝑉1  with the mass density 𝜌𝜌1 , and , 𝑉𝑉2   
with the mass density 𝜌𝜌2, from eq. (3) is inferred that the modal mass is given by: 

𝑚𝑚𝐸𝐸 = 𝑀𝑀1  
𝝍𝝍𝑻𝑻𝑽𝑽𝟏𝟏𝝍𝝍
𝑉𝑉1

+𝑀𝑀2  
𝝍𝝍𝑻𝑻𝑽𝑽𝟐𝟐𝝍𝝍
𝑉𝑉2

= 𝑀𝑀1𝐿𝐿𝐸𝐸1
2 + 𝑀𝑀2𝐿𝐿𝐸𝐸2

2     (17)  

Where  

𝐿𝐿𝐸𝐸1 =  
𝝍𝝍𝑻𝑻𝑽𝑽𝟏𝟏𝝍𝝍
𝑉𝑉1

;  𝐿𝐿𝐸𝐸2  
𝝍𝝍𝑻𝑻𝑽𝑽𝟐𝟐𝝍𝝍
𝑉𝑉2

 (18)  

are the partial lengths defined over the partial volumes, 𝑉𝑉1and , 𝑉𝑉2, respectively, which are related to 
the total length by: 

𝑉𝑉𝑇𝑇𝐿𝐿𝐸𝐸2 = 𝑉𝑉1𝐿𝐿𝐸𝐸1
2 + 𝑉𝑉2𝐿𝐿𝐸𝐸2

2     (19)  

Eq.(17) can also be expressed as: 

𝑚𝑚𝐸𝐸 = 𝑀𝑀𝑎𝑎𝑎𝑎𝐿𝐿𝐸𝐸2  (20)  

Where 𝑀𝑀𝑎𝑎𝑎𝑎 is an apparent mass given by: 

𝑀𝑀𝑎𝑎𝑎𝑎 =
𝑀𝑀1𝐿𝐿𝐸𝐸1

2 + 𝑀𝑀2𝐿𝐿𝐸𝐸2
2

𝐿𝐿𝐸𝐸2
= 𝑉𝑉𝑇𝑇

𝑀𝑀1𝐿𝐿𝐸𝐸1
2 +𝑀𝑀2𝐿𝐿𝐸𝐸2

2

𝑉𝑉1𝐿𝐿𝐸𝐸1
2 + 𝑉𝑉𝐿𝐿𝐸𝐸2

2  (21)  

Eqs. (17) and (21) can be generalized to systems  constituted by n parts as:  

𝑚𝑚𝐸𝐸 = �𝑀𝑀𝑘𝑘𝐿𝐿𝐸𝐸𝑘𝑘
2

𝑛𝑛

𝑘𝑘=1

   (22)  

And 

𝑀𝑀𝑎𝑎𝑎𝑎 =
∑ 𝑀𝑀𝑘𝑘𝐿𝐿𝐸𝐸𝑘𝑘

2𝑛𝑛
𝑘𝑘=1

∑ 𝑉𝑉𝑘𝑘𝐿𝐿𝐸𝐸𝑘𝑘
2𝑛𝑛

𝑘𝑘=1
 (23)  

 

4. A STEEL STRUCTURE  
The structure consists of a vertical column (length 1.45 m) and a horizontal beam (0.615 m), both with 
a rectangular hollow steel section 8cm×4cm and thickness 4mm, which is fixed at the bottom of the 
column (see Fig. 1). The structure was weighed the total mass being 𝑀𝑀𝑇𝑇𝑋𝑋 = 13.24 kg. The modal 
parameters were estimated with experimental modal analysis and the test setup is also shown in Fig. 1. 

The structure was excited with an impact hammer applying forces in DOF’s 10, 11 and 12, respectively, 
and the responses were measured in fifteen points using twelve accelerometers (two data sets) with a 
sensitivity of 100 mV/g, , using a sampling frequency of 2132 Hz. The responses were recorded with a 
National Instruments Compact DAQ acquisition system equipped with NI9234 acceleration modules.  
The modal parameters were estimated with the with the Complex Mode Indication Function (CMIF) 
technique [4] technique.  

A model of the structure was assembled in ABAQUS [8] and meshed with shell elements S8R (8 nodes 
with reduced integration) using a global size of 0.005m. The following mechanical properties were 
considered for the steel: mass density 𝜚𝜚 = 7850 𝑘𝑘𝑘𝑘/𝑚𝑚3, Young’s modulus 𝐸𝐸 = 210 ∙ 109  𝑁𝑁/𝑚𝑚2 and 
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Poisson ratio 𝜈𝜈 = 0.3. The total mass of the model is 𝑀𝑀𝑇𝑇𝐹𝐹𝐹𝐹 = 14.59 𝑘𝑘𝑘𝑘. The length of the numerical 
mode shapes was estimated with eq. (16). 

 
. 

 

 

 

 

 

 

 

 

Figure 1. Steel structure and test setup 

 

 
 

 
Figure 2. Numerical model meshed with shell elements. 

 

The natural frequencies and the modal masses (mode shapes normalized to the largest component equal 
to unity) corresponding to the first 8 modes are shown in Table 1. The mode shapes are presented in 
Table 2. 

An approximate transformation matrix 𝑻𝑻  was obtained with the equation: 

𝑻𝑻 = 𝜱𝜱𝑭𝑭𝑭𝑭𝑭𝑭
+ ∙ 𝜳𝜳𝑿𝑿𝑭𝑭 (24)  

 

Where the subindex ‘a’ indicates active or measured DOF’s. Then, the experimental mode shapes were 
expanded to the unmeasured DOF’s using the numerical mode shapes, i.e: 
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𝜳𝜳𝑿𝑿𝑿𝑿 = 𝜱𝜱𝑭𝑭𝑭𝑭𝑿𝑿 ∙ 𝑻𝑻 (25)  

Where subindex ‘d’ indicates unmeasured DOF’s. 

The length of the experimental mode shapes was also estimated with eq. (16) using the expanded mode 
shapes.  

The ratio modal mass-square length is presented in Table 2. In this structure the mass-density is 
constant, and it can be observed that the ratio 𝑚𝑚𝐹𝐹𝐸𝐸/𝐿𝐿𝐹𝐹𝐸𝐸2   is equal for all the modes and equal to the total 
mass of the system (𝑀𝑀𝑇𝑇𝐹𝐹𝐹𝐹 = 14.59 𝑘𝑘𝑘𝑘). 

Similar ratio 𝑚𝑚𝑋𝑋/𝐿𝐿𝑋𝑋2  has been obtained for all the experimental modes. As this ratio must be the same 
for all the modes, the results presented in Table 2 indicates that the modal masses have been estimated 
with a good accuracy. Morevoer, the ratio 𝑚𝑚𝑋𝑋/𝐿𝐿𝑋𝑋2  is, as expected, very close to the mass of the system  
𝑀𝑀𝑇𝑇𝑋𝑋 = 13.24 kg. The results of the ratio 𝑚𝑚𝐸𝐸/𝐿𝐿𝐸𝐸2  (Table 2) show that the modal masses were estimated 
with a good accuracy (error less than 1.5%), whereas modes 3 and 6 were estimated with errors of 5.5% 
and 8.25%, respectively.  

 
Table 1. Numerical and experimental natural frequencies and modal masses. 

Mode 
Natural frequency [Hz] Modal mass [kg] 

Experimental Numerical  Experimental Numerical 

1 12.53 10.938 6.25 6.90 
2 20.85 18.75 3.74 3.66 
3 55.74 50.781 1.47 1.71 
4 55.31 54.688 1.87 2.04 
5 131.98 115.625 6.57 7.12 
6 198.10 180.469 5.51 5.63 
7 324.78 284.572 4.93 5.42 
8 502.56 465.35 4.18 5.63 

 

 
Table 2. Comparison between experimental and numerical results. 

Mode 

Ratio modal mass-square 
length 

Error  
𝑚𝑚𝑋𝑋

𝐿𝐿𝑋𝑋2
/𝑀𝑀𝑇𝑇𝑋𝑋 

(%) 𝑚𝑚𝑋𝑋/𝐿𝐿𝑋𝑋2  𝑚𝑚𝐹𝐹𝐸𝐸/𝐿𝐿𝐹𝐹𝐸𝐸2  

1 13.1607 14.5815 0.599 
2 13.4442 14.5658 -1.542 
3 12.5100 14.5152 5.513 
4 13.3107 14.4991 -0.534 
5 13.4068 14.5855 -1.260 
6 14.3328 14.6002 -8.254 
7 13.6395 14.6066 -3.017 
8 13.0553 14.5295 1.395 
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5. A RIGID BEAM ON SPRINGS. CONSTANT MASS-DENSITY  
In this section the modal masses and mode shape lengths of a rigid beam supported on two springs (see 
Tables 3, 4 and 5) vibrating in the x-y plane (bouncing mode and pitch mode) have been calculated. 

The beam has constant density 𝜌𝜌, length  𝑎𝑎, total mass 𝑀𝑀, total volume 𝑉𝑉 = 𝑉𝑉/𝜌𝜌, and inertia   𝐽𝐽 =
𝑀𝑀𝑎𝑎2/12   with respect to de center of gravity of the beam. 

In Table 3 the system is modelled with two translational DOF’s and the mode shapes are normalized to 
the largest component equal to unity.  All the components of the mode shapes are dimensionless and 
the lengths of the mode shapes are also dimensionless. The modal masses of both modes are given in 
kg. As the density is constant, the modal mass is equal to the product between the total mass of the 
structure and the length squared. 
Table 3. Rigid beam on two springs. Two traslational DOF’s. Mode shapes normalized to the largest traslational 

component equal to unity. 

 
 
 
 

MODE 1 MODE 2 

 

 

NORMALIZATION Largest component equal 
to unity 

Largest component equal 
to unity 

 
MODE SHAPES 

𝝍𝝍𝟏𝟏 = �𝟏𝟏𝟏𝟏� �
𝑚𝑚/𝑚𝑚
𝑚𝑚/𝑚𝑚� 𝝍𝝍𝟐𝟐 = �−𝟏𝟏𝟏𝟏 � �𝑚𝑚/𝑚𝑚

𝑚𝑚/𝑚𝑚� 

MASS MATRIX 𝑴𝑴 �

𝑀𝑀
3

𝑀𝑀
6

𝑀𝑀
6

𝑀𝑀
3

� 

VOLUME MATRIX 𝑽𝑽 �

𝑉𝑉
3

𝑉𝑉
6

𝑉𝑉
6

𝑉𝑉
3

� 

LENGTH OF MODE SHAPES 

𝐿𝐿2 =
1
𝑉𝑉

 𝝍𝝍𝑻𝑻𝑽𝑽𝝍𝝍 
𝐿𝐿12 = 1 𝐿𝐿22 =

1
3

 

MODAL MASS 
𝑚𝑚 = 𝝍𝝍𝑇𝑇𝑴𝑴𝝍𝝍 

𝑚𝑚1 = 𝑀𝑀 (𝑘𝑘𝑘𝑘) 𝑚𝑚2 = 𝑀𝑀
3

 (𝑘𝑘𝑘𝑘) 

 

 
 
 
 

1 1 1 

-1 

2 

 

 

k              k 

a 
1 
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In Table 4 the system is modelled with a translational and a rotational DOF’s, The first mode is 
normalized to the largest translational component equal to unity, and the second mode  with largest 
rotational component equat to unity. The length of the first mode shape is  dimensionless and that 
corresponding to the second mode has the units of 𝑚𝑚2. The modal mass of the first mode is a mass (𝑘𝑘𝑘𝑘) 
and that of the second mode is a modal inertia (𝑘𝑘𝑘𝑘𝑚𝑚2) . 
 
Table 4. Rigid beam on two springs. Two traslational DOF’s. Mode shapes normalized to the largest traslational 

component equal to unity. 

 MODE 1 MODE 2 

  

NORMALIZATION  Largest traslational 
component equal to unity  

Largest rotational 
component equal to unity 

 
MODE SHAPES 

𝝍𝝍𝟏𝟏 = �10� �
𝑚𝑚/𝑚𝑚
𝑟𝑟𝑟𝑟/𝑚𝑚� 

 
𝝍𝝍𝟐𝟐 = �01� �

𝑚𝑚/𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟/𝑟𝑟𝑟𝑟� 

MASS MATRIX 𝑴𝑴                                 �𝑀𝑀 0
0 𝐽𝐽�               𝐽𝐽 = 𝑀𝑀𝑎𝑎2

12
 

VOLUME MATRIX 𝑽𝑽 �
𝑉𝑉 0

0
𝑉𝑉𝑎𝑎2

12
� 

LENGTH OF MODE SHAPES 

𝐿𝐿2 =
1
𝑉𝑉

 𝝍𝝍𝑻𝑻𝑽𝑽𝝍𝝍 
𝐿𝐿12 = 1 𝐿𝐿22 = 𝑎𝑎2

12
  (𝑚𝑚2) 

MODAL MASS 
𝑚𝑚 = 𝝍𝝍𝑇𝑇𝑴𝑴𝝍𝝍 

𝑚𝑚1 = 𝑀𝑀  (𝑘𝑘𝑘𝑘) 
 𝑚𝑚2 = 𝐽𝐽 = 𝑀𝑀𝑎𝑎2

12
 (𝑘𝑘𝑘𝑘𝑚𝑚2) 

 

In Table 5 the system is also modelled with a translational and a rotational DOF’s. Both modes are 
normalized to the largest translational component equal to unity so the rotational components have the 
units 𝑟𝑟𝑟𝑟

𝑚𝑚
. The lengths are dimensionless and the modal masses are given in 𝑘𝑘𝑘𝑘 and they are equal to 

those obtained Table 3. 
It can be checked that multiplying the mode shapes by the term 1

√𝑚𝑚
, the same mass normalized mode 

shapes are obtained with the results presented in Tables 3 to 5.  

 

 

 

 

 

 

1  
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Table 5. Rigid beam on two springs. Two traslational DOF’s. Mode shapes normalized to the largest traslational 
component equal to unity. 

 

 

 

 

MODE 1 MODE 2 

  

NORMALIZATION Largest traslational 
component equal to unity 

Largest traslational  
component equat to 

unity 

 
MODE SHAPES 

𝝍𝝍𝟏𝟏 = �10� �
𝑚𝑚/𝑚𝑚
𝑟𝑟𝑟𝑟/𝑚𝑚� 𝝍𝝍𝟐𝟐 = � 0

2/𝑎𝑎� �
𝑚𝑚/𝑚𝑚
𝑟𝑟𝑟𝑟/𝑚𝑚� 

MASS MATRIX 𝑴𝑴 �𝑀𝑀 0
0 𝐽𝐽�    𝐽𝐽 = 𝑀𝑀𝑎𝑎2

12
 

VOLUME MATRIX 𝑽𝑽 �
𝑉𝑉 0

0
𝑉𝑉𝑎𝑎2

12
� 

LENGTH OF MODE SHAPES 

𝐿𝐿2 =
1
𝑉𝑉

 𝝍𝝍𝑻𝑻𝑽𝑽𝝍𝝍 
𝐿𝐿12 = 1 𝐿𝐿22 =

1
3

 

MODAL MASS 
𝑚𝑚 = 𝝍𝝍𝑇𝑇𝑴𝑴𝝍𝝍 

𝑚𝑚1 = 𝑀𝑀 (𝑘𝑘𝑘𝑘) 𝑚𝑚2 = 𝑀𝑀
3

 (𝑘𝑘𝑘𝑘) 

 

6. A RIGID BEAM ON SPRINGS. TWO DIFFERENT MATERIALS 

The system shown in Table 6 also consists of a rigid beam supported on two springs, but the beam is 
made of steel (left half) and concrete (right half), i.e. the mass-density is not constant. The following 
geometrical and mechanical properties were considered: 𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 𝑡𝑡𝑙𝑙𝑙𝑙𝑘𝑘𝑡𝑡ℎ 𝑡𝑡𝑜𝑜 𝑡𝑡ℎ𝑙𝑙 𝑏𝑏𝑙𝑙𝑎𝑎𝑚𝑚 𝑎𝑎 = 1𝑚𝑚,
𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑟𝑟𝑙𝑙 𝑠𝑠𝑙𝑙𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑙𝑙 0.1 × 0.1 𝑚𝑚2,   𝑘𝑘 = 106𝑁𝑁

𝑚𝑚
,𝐸𝐸𝑠𝑠 = 210 𝐺𝐺𝐺𝐺𝑎𝑎, 𝜈𝜈𝑠𝑠 = 0.3,𝜌𝜌𝑠𝑠 = 7850 𝑘𝑘𝑘𝑘

𝑚𝑚3 ,𝐸𝐸𝑐𝑐 = 25 𝐺𝐺𝐺𝐺𝑎𝑎,   

𝜈𝜈𝑐𝑐 = 0.2 ,𝜌𝜌𝑐𝑐 = 2400 𝑘𝑘𝑘𝑘
𝑚𝑚3, where subindexes ‘s’ and ‘c’ indicate steel and concrete, respectively.  

The system is modelled with two translational DOF’s and the mode shapes were mass normalized, i.e. 
the components have the units  1/�𝑘𝑘𝑘𝑘, and the modal masses are dimensionless unity. The lengths and 
the partial lengths of the mode shapes were calculated with eqs. (13) and (18). In this case, an apparent 
mass, different for each mode, is obtained. 
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Table 6. Rigid beam on two springs. Two traslational DOF’s. Mode shapes normalized to the largest 
traslational component equal to unity. 

 
 
 
 

MODE 1 MODE 2 

 

 

NORMALIZATION 
Mass normalization 

𝑚𝑚𝜙𝜙 = 1  
Mass normalization 

𝑚𝑚𝜙𝜙 = 1 

 
MODE SHAPES 

𝝓𝝓𝟏𝟏 = � 0.1829
0.05421� �

1/�𝑘𝑘𝑘𝑘
1/�𝑘𝑘𝑘𝑘

� 𝝓𝝓𝟐𝟐 = � 0.1599
−0.3662� �

1/�𝑘𝑘𝑘𝑘
1/�𝑘𝑘𝑘𝑘

� 

MASS MATRIX 𝑴𝑴 (𝒌𝒌𝒌𝒌) 
 

�

7
12

𝑀𝑀𝑠𝑠 +
1

12
𝑀𝑀𝑐𝑐

1
6
𝑀𝑀𝑠𝑠 +

1
6
𝑀𝑀𝑐𝑐

1
6
𝑀𝑀𝑠𝑠 +

1
6
𝑀𝑀𝑐𝑐

1
12

𝑀𝑀𝑠𝑠 +
7

12
𝑀𝑀𝑐𝑐

� = �23.8958 8.5417
8.5417 10.2708� 

                                                        𝑀𝑀𝑠𝑠 = 39.25 𝑘𝑘𝑘𝑘, 𝑀𝑀𝑐𝑐 = 12 𝑘𝑘𝑘𝑘 

VOLUME MATRIX 
𝑽𝑽 �𝒎𝒎𝟑𝟑� 

�

7
12

𝑉𝑉𝑠𝑠 +
1

12
𝑉𝑉𝑐𝑐

1
6
𝑉𝑉𝑠𝑠 +

1
6
𝑉𝑉𝑐𝑐

1
6
𝑉𝑉𝑠𝑠 +

1
6
𝑉𝑉𝑐𝑐

1
12

𝑉𝑉𝑠𝑠 +
7

12
𝑉𝑉𝑐𝑐
� = �0.0033 0.0017

0.0017 0.0033� 

  

LENGTH OF MODE 
SHAPES 

𝐿𝐿2 = 1
𝑉𝑉

 𝝍𝝍𝑻𝑻𝑽𝑽𝝍𝝍 � 1
𝑘𝑘𝑘𝑘
�  

𝐿𝐿𝑠𝑠2 = 1
𝑉𝑉𝑠𝑠

 𝝍𝝍𝒔𝒔
𝑻𝑻𝑽𝑽𝒔𝒔𝝍𝝍𝒔𝒔 �

1
𝑘𝑘𝑘𝑘
�   

𝐿𝐿𝑐𝑐2 = 1
𝑉𝑉𝑐𝑐

 𝝍𝝍𝒄𝒄
𝑻𝑻𝑽𝑽𝑪𝑪𝝍𝝍𝒄𝒄   � 1

𝑘𝑘𝑘𝑘
�  

𝐿𝐿12 = 0.0154 
 

𝐿𝐿1𝑠𝑠2 = 0.0231 
 

𝐿𝐿1𝑐𝑐2 = 0.0078 

𝐿𝐿22 = 0.0337 
 

𝐿𝐿2𝑠𝑠2 = 0.0066 
 

𝐿𝐿2𝑐𝑐2 = 0.0608 

APPARENT MASS  

𝑀𝑀𝑎𝑎𝑎𝑎 =
𝑀𝑀𝑠𝑠𝐿𝐿𝐸𝐸𝑠𝑠

2 + 𝑀𝑀𝑐𝑐𝐿𝐿𝐸𝐸𝑐𝑐
2

𝐿𝐿𝐸𝐸2
 

𝑀𝑀𝑎𝑎𝑎𝑎1 = 64.717 (𝑘𝑘𝑘𝑘) 𝑀𝑀𝑎𝑎𝑎𝑎1 = 29.315(𝑘𝑘𝑘𝑘) 

MODAL MASS 
𝑚𝑚 = 𝝍𝝍𝑇𝑇𝑴𝑴𝝍𝝍 

𝑚𝑚 = 𝑀𝑀𝑠𝑠𝐿𝐿𝐸𝐸𝑠𝑠
2 +𝑀𝑀𝑐𝑐𝐿𝐿𝐸𝐸𝑐𝑐

2  
𝑚𝑚1 = 1 𝑚𝑚2 = 1 
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7. CONCLUSIONS  

When the mass density of a structure is constant, the modal mass is always equal to the product between 
the total mass of the structure and the length squared (𝑚𝑚𝐸𝐸 = 𝑀𝑀𝑇𝑇𝐿𝐿𝐸𝐸2 ). If the mass density is not constant, 
the modal mass  is equal to the product between an apparent mass (which is different for each mode)  
and the length squared. The modal mass of a mode shape normalized to a displacement equal to unity, 
is given in 𝑘𝑘𝑘𝑘. On the other hand, if the normalization is to a rotation equal to unity, then the modal 
mass is given in 𝑘𝑘𝑘𝑘𝑚𝑚2, i.e. it is a modal inertia. 

In constant mass density systems, the ratio 𝑚𝑚𝐸𝐸/𝐿𝐿𝐸𝐸2  is constant for all the modes and equal to the total 
mass of the system. This property has been used in an experimental steel beam structure, to validate the 
modal masses estimated by experimental modal analysis. The experimental mode shapes were 
expanded to the unmeasured DOF’s using a numerical model and the squared lengths estimated with 
eq. (16). The results of the ratio 𝑚𝑚𝐸𝐸/𝐿𝐿𝐸𝐸2  (Table 2) show that the modal masses were estimated with a 
good accuracy (error less than 1.5%), except modes 3 and 6, which were obtained with errors of 5.5% 
and 8.25%, respectively.  

The  modal masses and lengths of a rigid beam supported on two springs, vibrating in the x-y plane,  
were calculated using different sets of DOF’s and different types of normalization. It has been 
demonstrated that all the models provide the same mass normalized mode shapes, independently of the 
type of normalization and the set of DOF’s considered to define the system. 

ACKNOWLEDGEMENTS 

The authors would like to express their gratitude to the Spanish Ministry of Science and Innovation for 
the financial support through the project MCI-20-PID2019-105593GB-I00/AEI/10.13039/501100011033. 

REFERENCES 

[1] Dianat S.A and Saber E. (2009) Advanced Linear Algebra for Engineers wiht MATLAB, New York: 
CRC Press. 

[2] Clough RW and  Penzien J (1993)  Dynamics of structures, 2nd edition. New York: McGraw-Hill- 

[3] Chopra AK (1995) Dynamics of Structures. New Jersey: Prentice Hall. 

[4] Heylen W, Lammens S and  Sas P (2007)  Modal Analysis theory and testing. Belgium: Katholieke 
Universiteit Leuven, Faculty of Engineering. 

[5] Brincker R., Ventura C. (2015). Introduction to Operational Modal Analysis.  Chichester: John 
Wiley & Sons Ltd. 

[6] Aenlle M, Juul M, Brincker R. Modal Mass and Length of Mode Shapes in Structural Dynamics. 
Shock Vib 2020;2020:1–16. 

[7] M. Aenlle and R. Brincker, “Basic Concepts of Modal Scaling,” 8th Int. Oper. Modal Anal. Conf., 
2019. 

[8] ABAQUS UNIFIED FEA. Dassault Systems. 

213



214



215



216



217



218



219



220



221



 
 

DIRECTIONAL COORDINATES FOR THE 

IDENTIFICATION OF BACKWARD AND FORWARD 

FREQUENCIES OF ROTATING MACHINES VIA OMA 

Nathali Dreher1, Gustavo Storti 2, and Tiago Machado 3 

1 PhD Student, University of Campinas, School of Mechanical Engineering, nathalidreher@gmail.com. 
2 PhD Student, University of Campinas, School of Mechanical Engineering, gucstorti@gmail.com. 
3 Associate Professor, University of Campinas, School of Mechanical Engineering, tiagomh@fem.unicamp.br. 

ABSTRACT 

Operational Modal Analysis has been widely used to extract and monitor modal parameters of systems 

in operation. There is a great number of research in which OMA was successfully implemented, the 

majority encompassing civil structures, such as beams, bridges, and buildings. However, applying 

OMA to rotating machines can be a real challenge. These systems are usually subjected to non-

stationarity, caused, for example, by changes in rotational speed. In addition, they can be installed in 

areas without the influence of excitation conditions that agree with OMA’s main premise. However, 

even when the operating conditions are favorable, the identification of the rotor’s modes is still a 

challenge. Due to the gyroscopic effect, the backward and the forward frequencies of each vibration 

mode may move away or towards each other, appearing sometimes as closely spaced frequencies that 

are difficult to identify and differentiate via OMA techniques. The transformation of the rotor’s 

response from the physical coordinates to directional coordinates have been widely used to separate the 

forward and backward components of the rotor’s response. The purpose of this paper is to employ this 

transformation and apply OMA to each directional coordinate, enabling the identification of both 

forward and backward frequencies of the rotor’s modes and improving the results of OMA in rotating 

machines. The methodology was applied to a dataset of a test rig with a rotor supported by 

hydrodynamic bearings, and the results showed that directional coordinates are a promising tool to 

improve the identification of rotor modes. 

Keywords: Operational Modal Analysis, Directional Coordinates, Rotating Machines 

1. INTRODUCTION 

Rotating machines are components of great importance in the most diverse branches of industry, 

requiring attention for their operation and maintenance. Defects and failures in these machines can lead 

to undesired expenses and unscheduled stops, delaying production and increasing company costs. In 
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more serious cases, failures can lead to catastrophes that compromise the environment and risk the 

processes’ security. With the purpose of preventing critical problems such as these, the constant 

monitoring of rotating machines can be employed.  

The monitoring of rotating machines can be carried out through several different techniques that 

encompass the monitoring of the machine’s parameters, such as electrical signals, noise, vibration 

levels, and modal parameters, the last being usually extracted from vibration signals using classical 

modal analysis. However, the application of classical modal analysis in the constant monitoring of 

systems is a counterproductive task, since it demands more time and the use of additional devices 

coupled to the system. Operational Modal Analysis (OMA) brings some advantages in comparison to 

classical modal analysis, such as not requiring equipment to excite the system and not taking it out of 

operation to extract the modal parameters, reducing costs and allowing the constant monitoring. Thus, 

OMA has been a focus of research to extract modal parameters of systems in operation through the past 

decades, and, as already stated, have been successfully applied to several civil structures. This 

prominent success is associated to two main factors. First, the loads acting upon these structures are 

provided by elements such as the wind and the pedestrian or vehicle traffic, that altogether can be 

modeled as white noise inputs and agree with OMA’s main premise. Moreover, OMA requires the 

system under analysis to be linear and time-invariant, as is the case with most civil structures. However, 

applying OMA to more complex systems, like rotating machines, is still a great challenge to be 

overcome.  

In the special case of rotating machines, non-linearities in the system, excitation conditions that do not 

satisfy OMA’s main premise, and closely spaced frequencies difficult to differentiate pose challenges 

to the modal identification. Although some research [1] already demonstrated that, under adequate 

excitation conditions, the rotor’s modal parameters can be extracted through OMA’s techniques with 

results really close to the ones extracted by classical modal analysis techniques, non-linearities and 

closely spaced modes are still challenges to OMA. Focusing on the last, some remarks about the rotor 

dynamics must be made. It is worth mentioning that the modes of a rotor usually appear in pairs, the 

forward and backward modes, and that one of the consequences of the gyroscopic effect on the 

dynamics of the rotor is the approximation or diversion of these two modes, which can originate closely 

spaced modes that are difficult to identify and differentiate via OMA techniques.  

In 1991, Lee [2] developed the basic theory of the directional modal analysis of rotating machines, 

comparing it with the classical modal analysis. The author stated that the application of classical modal 

testing to rotating machinery has resulted in the heavy overlapping of the backward and forward modes 

in the frequency domain. Therefore, Lee [2] proposed the use of the complex notation and enabled not 

only a clear distinction of the forward and backward modes, but also the separation of those modes in 

the frequency domain, so that effective modal parameter identification was possible [2].  

This methodology was further investigated and employed, as can be seen in the works of [3], [4], [5], 

[6] and [7], becoming an essential tool in the study of rotor dynamics. 

In order to enable the identification of the rotor’s forward and backward frequencies via OMA 

techniques, this work proposes the use of directional coordinates before applying OMA to vibration 

signals of a rotating machine. The proposed methodology was applied to vibration signals of a rotor 

supported by hydrodynamic bearings and under different excitation conditions. Stochastic Subspace 

Identification (SSI-DATA) method was employed as the OMA technique. 

2. METHODOLOGY 

2.1. Directional Coordinates 

Figure 1 illustrates the motion of a rotor in the Y and Z directions, from which it is possible to identify 

two rotations, the rotor spin (Ω) and the rotor precession (𝜔), that is, its rotation around itself and the 

rotation of the deflected axis around its undeflected configuration. The precession motion has two 

components: the forward one, that occurs in the same direction of the rotor spin (Figure 1 (a)), and the 

backward one, that occurs in the opposite direction of the rotor spin (Figure 1 (b)). 
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Figure 1. Forward (a) and backward (b) motions [7]. 

 

According to [7], for an external excitation force of frequency 𝜔, the cartesian coordinates can be 

written in the complex plane as rotating vectors: 

𝒚 = {𝒚𝑟𝑒 + 𝑗𝒚𝑖𝑚}𝑒𝑗𝜔𝑡 =  (𝒚𝑟𝑒𝑐𝑜𝑠 𝜔𝑡 − 𝒚𝑖𝑚𝑠𝑖𝑛 𝜔𝑡) + 𝑗(𝒚𝑖𝑚𝑐𝑜𝑠 𝜔𝑡 + 𝒚𝑟𝑒𝑠𝑖𝑛 𝜔𝑡) (1)  

𝒛 = {𝒛𝑟𝑒 + 𝑗𝒛𝑖𝑚}𝑒𝑗𝜔𝑡 =  (𝒛𝑟𝑒𝑐𝑜𝑠 𝜔𝑡 − 𝒛𝑖𝑚𝑠𝑖𝑛 𝜔𝑡) + 𝑗(𝒛𝑖𝑚𝑐𝑜𝑠 𝜔𝑡 + 𝒛𝑟𝑒𝑠𝑖𝑛 𝜔𝑡) (2)  

It is important to note that the imaginary parts in Eq. (1) and Eq. (2) are related to the rotation of the 

vectors 𝒚 and 𝒛, and the real parts correspond to the physical coordinates which can be measured. 

Therefore, the system response 𝒒 can also be represented in the complex plane: 

𝒒 = (𝒚𝑟𝑒𝑐𝑜𝑠 𝜔𝑡 − 𝒚𝑖𝑚𝑠𝑖𝑛 𝜔𝑡) + 𝑗(𝒛𝑟𝑒𝑐𝑜𝑠 𝜔𝑡 − 𝒛𝑖𝑚𝑠𝑖𝑛 𝜔𝑡)  (3)  

The same system response in Eq. (1) and Eq. (2) can be described by two rotating vectors, being one 

forward and one backward: 

𝒇 = {𝒇𝑟𝑒 + 𝑗𝒇𝑖𝑚}𝑒𝑗𝜔𝑡 =  (𝒇𝑟𝑒𝑐𝑜𝑠 𝜔𝑡 − 𝒇𝑖𝑚𝑠𝑖𝑛 𝜔𝑡) + 𝑗(𝒇𝑖𝑚𝑐𝑜𝑠 𝜔𝑡 + 𝒇𝑟𝑒𝑠𝑖𝑛 𝜔𝑡) (4)  

𝒃 = {𝒃𝑟𝑒 + 𝑗𝒃𝑖𝑚}𝑒𝑗𝜔𝑡 =  (𝒃𝑟𝑒𝑐𝑜𝑠 𝜔𝑡 + 𝒃𝑖𝑚𝑠𝑖𝑛 𝜔𝑡) + 𝑗(𝒃𝑖𝑚𝑐𝑜𝑠 𝜔𝑡 − 𝒃𝑟𝑒𝑠𝑖𝑛 𝜔𝑡) (5)  

Comparing both representations and making que equality 𝒑 = 𝒇 + 𝒃 = 𝒒, the following relation 

between physical and directional coordinates is obtained: 

{
𝒚
𝒛

} = 𝑨. {
𝒇

�̅�
} ;  {

𝒇

�̅�
} = 𝑨−1. {

𝒚
𝒛

}  (6)  

where �̅� is the complex conjugate of 𝒃.  

The transformation matrix 𝑨 and its inverse 𝑨−1 are expressed as: 

𝑨 = [
  
1

2
      

𝑗

2
  

  
1

2
−

𝑗

2
  

] ;  𝑨−1 = [
  
1

2
      

𝑗

2
  

  
1

2
−

𝑗

2
  

] (7)  

Thereby, the system of Eq. (6) allows the transformation of physical coordinates in the y and z directions 

to the forward (f) and backward (b) directional coordinates. 
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2.2. Description of Dataset 

The dataset used in this work was taken from a test rig with a rotor supported by hydrodynamic bearings, 

displayed on Figure 2. The system is basically composed of a rotating steel shaft (15 mm in diameter 

and 719 mm in length) supported by two hydrodynamic bearings (31 mm diameter, 18 mm length, 90 

µm of radial clearance and ISO VG32 oil at ambient temperature as working fluid) connected to an 

electric motor through a flexible coupling. In addition, the system has a hard disk and an 

electromagnetic actuator. The experiments were carried out with the rotor operating with an angular 

shaft velocity of 75 Hz and four accelerometers installed in both bearings (two accelerometers for each 

bearing) were used to collect the vibration on the Y and Z directions. 

 

 

Figure 2. Dataset test rig. 

 

As already mentioned, rotating machines can be subjected to different types of excitation conditions 

that can facilitate or hinder OMA’s application. Hence, more than one test condition was used, with 

variation of inputs, excitation directions, sampling frequencies, and periods of time, resulting on the 

tests displayed in Table 1. Altogether, 106 measurements were collected. 

 

Table 1. Test conditions. 

Test 𝑓𝑠 [Hz] Time [s] Excitation Direction Excitation 

1 2048 240 Y White noise – medium intensity 

2 2048 240 Y White noise – low intensity 

3 2048 240 Z White noise and tapping 

4 2048 240 Y Blue noise 

5 1024 240 Y White noise – medium intensity 

6 2048 480 Y White noise – medium intensity 

 

An Experimental Modal Analysis (EMA) was also carried out to determine the modal parameters of the 

analysed rotor, so that reference values were known for further validation of the OMA’s results. First, 

the analysis of the Frequency Response Functions (FRF) from white noise excitation over a wide 

frequency range was performed in order to identify frequency regions of the modes of interest. Then, 

the Stepped Sine and the Predicted Error Method (PEM) were employed to extract the rotor’s modal 
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parameters. Five measurements were collected to compute mean values and diminish random errors. 

The results are displayed in Table 2. It is important to emphasize that two pairs of natural frequencies 

were identified, each one containing the forward and the backward frequencies of the rotor. 

 

Table 2. Modal parameters of the rotor. 

Mode 
Backward Forward 

Freq. [Hz] Damp. [%] Freq. [Hz] Damp. [%] 

First 52.8 4.26 53.1 4.25 

Second 212.6 2.45 212.2 2.48 

 

2.3. Proposed Methodology  

With the acceleration signals of y and z directions of bearings 1 and 2 (𝒚𝟏, 𝒛𝟏, 𝒚𝟐, 𝒛𝟐), the Fast Fourier 

Transform (FFT) is applied, and values of amplitude (|𝑿|) and phase (∠𝑿) are extracted to create the 

following complex signal: 

𝒙𝒄 = |𝑿|. 𝑒−𝑗∠𝑿 (8)  

Then, the transform to directional coordinates is performed following the equations: 

{
𝒇𝟏

�̅�𝟏
} = 𝑨−1. {

𝒚𝒄𝟏

𝒛𝒄𝟏
}  (9)  

{
𝒇𝟐

�̅�𝟐
} = 𝑨−1. {

𝒚𝒄𝟐

𝒛𝒄𝟐
}  (10)  

The Inverse Fast Fourier Transform (IFFT) is then applied to signals 𝒇𝒊 and 𝒃𝒊 and the results of this 

operation are grouped in the forward (𝒇𝟏 e 𝒇𝟐) and backward (𝒃𝟏 e 𝒃𝟐) signals. OMA is applied using 

the SSI-DATA method, from which it is possible to obtain stabilization diagrams to the forward and 

backward signals. The diagrams are interpreted by an automatic algorithm that extracts global modes 

that represent physical modes of the system. This automatic algorithm was developed by the authors 

based on the research of [8], [9], and [10]. 

3. RESULTS 

The methodology was applied to the signals of Table 1 and the resulting global modes of the rotor are 

displayed on Figure 3, together with the rotor modes extracted via traditional OMA and EMA (Table 

2). From Figure 3, one can see that traditional OMA is unable to identify both forward and backward 

frequencies of the rotor in all tests, while the use of directional coordinates as a previous step of OMA 

enabled the identification of all pairs of rotor modes. For both modes, the frequencies extracted through 

the proposed methodology and through traditional OMA presented values close to the ones extracted 

via EMA, however, the values extracted through the proposed methodology were closer to the reference 

for most tests. Moreover, the differences between the forward and backward frequencies extracted 

through the proposed methodology were close to the differences observed on the frequencies extracted 

through EMA for most results, as expected from the system under analysis. 

The damping ratios of the first mode (Figure 3 (b)) extracted through the proposed methodology also 

presented values closer to the EMA reference. On the other hand, the damping ratios of the second 

mode (Figure 3 (d)) extracted through the proposed methodology presented significantly different 

values for tests 1, 3, and 6. However, it is worth mentioning that it is difficult to estimate damping ratios 

even when well consolidated EMA tests are employed in the modal identification.  
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Figure 3. First (a and b) and second (c and d) rotor’s global modes extracted using EMA, traditional OMA, and 

OMA with directional coordinates. 

 

Figure 4 displays the stabilization diagrams of test 1 obtained with the raw data, that is, based on the 

traditional OMA (Figure 4 (a)), with the forward data (Figure 4 (b)), and with the backward data (Figure 

4 (c)) of Eq. (9) and (10). All stabilization diagrams of Figure 4 have similar characteristics, although 

the diagrams obtained from the directional coordinates data altered the frequencies of the modes related 

to other components of the test rig. Since the directional coordinates are used to separate the forward 

and backward components of the rotor modes, this alteration is an expected result. Moreover, one can 

identify two alignments of poles near the first rotor mode (52.8 Hz) in all stabilization diagrams, which 

could lead to the idea that both forward and backward frequencies were identified in all of them. 

However, the poles on the right side of each order are mostly identified with high damping ratio (>7%), 

being inadequate to represent any rotor frequency. As for the second rotor mode (212.6 Hz), only one 

alignment of stable poles was identified in each stabilization diagram. The alignments of Figure 4 (b) 

and Figure 4 (c) have different frequencies, indicating that the directional coordinate transformation 

was able to separate modes that were once combined in Figure 4 (a). 
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Figure 4. Stabilization diagrams of traditional OMA (a), and with the forward (b) and backward (c) directional 

coordinates. 
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4. CONCLUSIONS 

This study proposes the use of the transformation of the rotor’s response from physical coordinates to 

directional coordinates as a previous step of OMA to enable the identification of both forward and 

backward modes of the rotor. The methodology was applied on vibration signals from a test rig with a 

rotor supported by hydrodynamic bearings under different excitation conditions, so that different 

scenarios, that are common on the operation of rotating machines, would be tested. The results revealed 

that the use of directional coordinates as a previous step of OMA not only enabled the identification of 

both forward and backward modes, but also enhanced the values precision when compared to the EMA 

references. Therefore, the methodology proved to be a promising tool for the identification of closely 

spaced modes of forward and backward precessions of rotating machines. Nevertheless, additional 

studies are in progress to assess the methodology’s robustness to other datasets with different 

characteristics and excitation conditions. 
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ABSTRACT 

The building of the Laboral City of Culture is located in the city of Gijón (Spain) and it was built in the 

1950s. The tower of this building is reminiscent of the famous Giralda tower in Seville and the 

Lighthouse in Alexandria. The tower has a height of 130 m and a square shape 12 x 12 m. In order to 

have data about the dynamic behaviour of the tower at a present state, operational modal analysis 

(OMA) was applied in order to identify its modal parameters (natural frequencies, mode shapes and 

damping ratios). However, due to the difficulty of measuring the response of steel cross 25 meters 

height located at the top of the structure, the modal identification is quite an intricate task. With the aim 

of improving the understanding of the dynamic behaviour of the tower, a detailed 3D finite element 

model (FEM) was assembled in ABAQUS. The correlation between the experimental and the numerical 

modal parameters are presented in this paper and it is concluded that the FEM model leads to a 

satisfactory identification of all the mode shapes of the structure. 

Keywords: Heritage buildings, Finite element model, OMA. Model-updating  
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1. INTRODUCTION 

The Laboral City of Culture is a building located in the city of Gijón (Spain) and it was built 

between 1946 and 1956. It is the most important architectural work constructed in the twentieth 

century in  

Asturias. The origin of the building was a serious accident occurred in an Asturian mine in the 

mid1940s due to a firedamp explosion [1, 2]. The government of the time decided to construct an 

orphanage to attend around 1000 orphaned students whose parents were victims of accidents in 

mining. The building was transformed during its construction into a Technical College under the 

name of “Universidad Laboral de Gijón” [1, 2].  

 

Figure 1. “Laboral City of Culture” Building (Gijón-Spain) 

In 2001, the regional government of the Principality of Asturias decided to transform the building in 

order to give it a new life. The project became a reality in 2007 and the building was then renamed as 

“Laboral City of Culture” [2]. The Tower (Figure 2) is perhaps the most characteristic building of the 

Laboral City of Culture, as it serves to identify the City of Culture at first sight.  

In this work, a detailed finite element (FE) 3D model of the structure, which was correlated with the 

OMA tests performed in the tower, is presented. Moreover, the FEM was used to improve the 

understanding of the dynamic behaviour of the tower, which was necessary to identify local and global 

modes of the structure. 
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Figure 2. Views of the Tower (from https://jenaroartirusuarezprendes.webs.tl) 

2. FINITE ELEMENT MODEL OF THE TOWER 

2.1. The structure 

With a heigh of 130 mn, the tower is a 3D concrete frame structure and it has 21 floors (Figure 3). Up 

to 4th floor the vertical elements are 4 concrete big columns located at the corners and a central 

reinforced concrete column (Figure 3). From 5th floor to 17th floor all the columns are made of 

reinforced concrete and there are 4 columns at the corners, 8 columns at the sides (2 in each side) and 

a central column. From 17th floor to the top; the structure consists only of 4 reinforced concrete columns 

(Figure 3). Its marvellous vantage points on the 14th, 17th and 18th floors provide tourists and visitors 

with magnificent views of La Laboral’s surroundings. A Steel cross structure 25 meters long is located 

on the top of the tower. 
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Figure 3. Original design and skecth of the different sections of the tower (from repository of Fernando 

González Verdesoto) 

 

To modelling of the tower structure was quite complex due to the impossibility of obtaining the 

drawings used in the building process. The drawings of original design (see Figure 3) were available 

but they underwent several modifications before and during the construction process. Only the 

AUTOCAD drawings based on recent measurements in the structure, together with some photos 

corresponding to the construction of the structure, were used to assemble the finite element model. 

However, some important details were still missing and many assumptions about dimensions, materials, 

mechanical properties, etc.,  were considered. Some details of the different sections are presented in 

Figure 4. 

 

Sección : section 

Planta : floor 
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Figure 4. Different sections of the tower strcuture 

2.2. The FE Model 

Due to the complex geometry of several structural elements (columns, floors, walls, steel cross, etc.), a 

3D finite element modellization was selected for this structure. The different sections presented in 

Figure 3 were modelled in different parts, in order to take easier control of the geometry  and the 

mechanical properties of the materials), and then  assembled in ABAQUS CAE []. 3D brick elements 

were used to mesh the sections 1 to 5 of  the tower, whereas section 6 and the steel cross were meshed 

with 3D wegde elements. In order to get a good quality mesh, a large number of carefully partitions 

were made. The finite element model  is presented in Figure 5 

 

 

Figure 5. Details of the FEM of the Laboral city of Culture Tower. 
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The natural frequencies and mode shapes extracted from the finite element model are presented in in 

Table 1 and in Figs. 10 to 12 (Section 4).  

3. OMA OF THE TOWER 

In the OMA tests,  the response of 21 DOF’s in floors 8,12, 17 and 10 (see Figure 3) were measured 

with uniaxial and triaxial Guralp acceleration sensors. Two Guralp digital acquisition systems, 

synchronized via an internal cable, and with a total of 24 channels, were used to acquire the 

experimental responses using the Scream software. (see Figure 3). An skecth of the measurement layout 

and the location of accelerometers are presented in Figure 6. The sampling frequency was 25 Hz and 

the acceleration responses  were recordered for approximately 24 hours.  

 

Figure 6. Test setup. 

 

During the OMA tests, the temperature changed in the range 7º-19ºC (see Figure 8). The wind speed 

(slower during evening and night) during the OMA tests is also presented in Fig. 8, where 0 hours 

corresponds with the start of the data acquisition: 12:00 PM.  

In order to analyze the effect of temperature in natural frequencies of the tower, the Short Time Fourier 

Transform were applied to the data, the results being presented in Figure 8. Yellow dashed lines 

correspond to constant frequency. It can be observed that natural frequencies decreases slightly with 

decreasing temperature. The results presented in Table 1 were estimated with the first 4 hours of testing.  

This period also coincide with the higher wind speeds.   
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Figure 7. Temperature and wind speed during recording and STFT of the data. 

 

The OMA identification was performed with the ARTEMIS Modal Pro software using the Frequency 

Domain Decomposition (FDD) technique. The singular value decomposition (SVD) of the responses is 

presented in Figure 7 with the modes identified in the range 0 – 5 Hz. 
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Figure 8. SVD of the registered signals. 

The natural frequencies and the mode shapes estimated with OMA are presented Table 1 and in Figs. 

10 to 12 (Section 4). 

4. NUMERICAL AND EXPERIMENTAL RESULTS 

The main drawbacks of the OMA identification in this structure,  are the local mode shapes of the top 

steel cross, as well as the symmetry of the structure which implies closely or even repeated modes. In 

both cases, the FEM model was a valuable tool for improving the understanding of the dynamic 

behaviour of the tower. 

In the operational modal analysis, the MAC between the modes at approximately 0.7 Hz and 1.3 Hz, is 

very close to unity. From the finite element model was inferred that the experimental modes at 0.657 

Hz and 0.704 Hz  (see Figure 9) correspond to the first bending modes of the top steel cross. On the 

other hand, the modes at 1.302 Hz and 1.341Hz corrrespond the first bending modes of the  tower.  Due 

to the fact that no sensors were located at the steel cross, the local bending modes of the steel cross and 

first bending modes of the tower look similar (spatial aliasing)  due to the insufficient number of DOFs 

used in the measurements.  

Five modes were identified in the range 2.8-3.6 Hz. It can be observed in Figure 9 that the local second 

bending modes of the steel cross are mixed with thesecond bending and the first torsional modes of the 

tower.  

Finally the the modes identified in the range 4-6 Hz correspond to the 3rd bending modes and the second 

torsional mode of the tower. 
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Figure 9. Details of the OMA identification modes of the tower. 

 

The experimental and the numerical natural frequecies, together with the MAC between the numerical 

and the OMA mode shapes, are presented in Table 1. It can be inferred that a good correlation exists 

between the experimental and the numerical global bending modes, the maximum error being 10%.  

A larger error exists in the torsional modes of the tower and the local modes of the steel cross, which 

indicates that the numerical model has to be modified in order to get a better correlation.   

 

1st Bending Cross 

1
st
 Bending Tower 

2nd Bending Tower 

2
nd

 Bending Cross 

1
st
 Torsion Tower 

3rd Bending Tower 

2
nd

 Torsion Tower 
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Table 1. Natural frequencies, error and MAC between the OMA and the FE model. 

Mode 
Frequency OMA 

[Hz[ 

Frequency FEM 

[Hz] 

Error 

[%] 
MAC 

1 1st bending Y (cross) 0.657 0.626 4.72 0.914 

2 1st bending X (cross) 0.704 0.608 13.64 0.978 

3 1st bending X 1.302 1.187 8.83 0.962 

4 1st bending Y 1.341 1.212 9.61 0.975 

5 2nd bending Y (cross) 2.991 3.571 19.39  – 

6 2nd bending X  3 2.795 6.83 0.975 

7 2nd bending Y  3.173 2.857 9.96 0.96 

8 1st torsion 3.334 3.903 17.07 0.504 

9 2nd bending X (cross) 3.52 3.602 2.27 –  

10 3rd bending Y 4.613 5.147 11.58 0.639 

11 3rd bending X 4.772 4.783 0.23 0.876 

12 2nd torsion 5.551 ND  –  – 

 

 

1st bending modes of the top cross 1st bending modes of the tower 

    

FEM Experimental FEM Experimental 

X – 0.626 Hz X – 0.651 Hz X – 1.187 Hz X – 1.302 Hz 

Y – 0.608 Hz Y – 0.704 Hz Y – 1.122 Hz Y – 1.340 Hz 

Figure 10. Mode shapes in the range 0-1.5 Hz. 
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2nd bending modes of the tower 1st torsional mode of the tower 

    

FEM Experimental FEM Experimental 

X – 2.795 Hz X – 2.991 Hz 
3.903 Hz 3.340 Hz 

Y – 2.857 Hz Y – 3.173 Hz 

Figure 11. Mode shapes of the tower in the range 2-4 Hz. 

 

3rd bending mode of the tower 

  

FEM Experimental 

X – 4.783 Hz X – 4.772 Hz 

Figure 12. Third mode shape of the tower. 

241



CONCLUSIONS 

 A symmetric finite element model of the tower was assembled in ABAQUS using 3D elements. 

This model provided valuable information to understand the dynamic behaviour of the tower, 

in particular, to identify the local bending modes of the top part of the tower and the global 

modes of the tower.  

 Operational modal analysis has been applied to the tower of “Laboral City of Culture” in order 

to determine its dynamic behaviour under ambient working conditions. 

 Within the frequency range 0-6 Hz, 10 bending modes and 2 torsional modes were identified 

by OMA. 

 The FE model presents a quite reasonable correlation between the numerical and the 

experimental identifiy modes. 

ACKNOWLEDGEMENTS 

The financing support given by the Spanish Ministry of Education through the project MCI-20-

PID2019-105593GB-I00/AEI/10.13039/501100011033 is gratefully appreciated. 

REFERENCES 

[1] J. Zatón, J.C. Alvárez (1993). Guía Histórico-Artística del C.E.I. de Gijón –Antigua Universidad 

Laboral. Ediciones Júcar. 

[2] (n.d). Retrieved from http://www.laboralciudaddelacultura.com/ 

[3] Brincker, R., Zhang, L. and Andersen, P. (2001). Output-Only Modal Analysis by Frequency 

Domain Decomposition. Smart Materials and Structures 10, 441-445.  

[4] Van Overschee, P. and De Moor, B.(1996). Subspace identification for linear systems: Theory, 

implementation, applications. Kluwer Academic Publishers 

242



 
 

EXAMPLES OF MODEL CORRELATION WITH  
CLOSELY SPACED MODES 

N. García-Fernández1, F. Pelayo2and M. Aenlle2 

1 PhD Student, University of Oviedo, garciafnatalia@uniovi.es 
2 Professor, University of Oviedo, fernandezpelayo@uniovi.es 
3 Professor, University of Oviedo, aenlle@uniovi.es 

ABSTRACT 

In structural dynamics, two modes with natural frequencies 𝜔𝜔1 and 𝜔𝜔2, respectively, are closely spaced 
if the frequency separation 𝛥𝛥𝜔𝜔 = 𝜔𝜔2 − 𝜔𝜔1 is very small. If 𝛥𝛥𝜔𝜔 = 0, the modes are repeated. On the 
other hand, it is well known that closely spaced modes are highly sensitive to small perturbations of 
mass and stiffness.  

When a system with closely spaced eigenvalues is perturbed, the associated mode shapes are mainly 
rotating in their initial subspace. This means that we can have a good correlation in terms of mass and 
stiffness between the models, but low values of modal assurance criteria (MAC) can be obtained 
because of this rotation. In this case, the individual mode shapes should not be used for correlation using 
the modal assurance criteria (MAC), but the subspaces spanned by the unperturbed and the perturbed 
mode shapes should be correlated.  

If we still want to measure the correlation using MAC, the experimental mode shapes must be 
previously rotated in the subspace in order to get the best correlation between the experimental and the 
numerical mode shapes.  

In this paper, three models with closely spaced modes are studied.  Firstly, an analytical model with 4 
DOF’s and two repeated eigenvalues is perturbed with small mass changes. The other two models are 
experimental models with closely spaced modes which are correlated with two numerical models 
assembled in ABAQUS and ANSYS.  The experimental mode shapes were rotated in the subspace to 
get the best correlation between the models in terms of MAC.  

Keywords: Model correlation, closely spaced modes, Operational Modal Analysis, Rotation matrix 
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1. INTRODUCTION 

1.1. General information 

In structural dynamics, closely spaced modes are defined as modes which are close in frequency [1-3]. 
A rule of thumb to define a set of mode shapes as closely spaced was proposed in [3]. If we consider 
two modes with close natural frequencies 𝜔𝜔1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔2, and frequency distance Δ𝜔𝜔 = 𝜔𝜔2 − 𝜔𝜔1, they can 
be considered closely spaced if:  

𝛥𝛥𝜔𝜔
𝜔𝜔

<
1

1000
 (1)  

where 𝜔𝜔 = 𝜔𝜔1 

The Modal Assurance Criterion (MAC) [4-5] is by far the most widely used technique to compare mode 
shapes. If two vectors 𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭 and 𝝓𝝓𝑿𝑿𝑿𝑿 , corresponding to a numerical and an experimental model, 
respectively, are compared, the MAC is given by: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹,𝜙𝜙𝑋𝑋𝑋𝑋) =
�𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹𝐻𝐻 ∙ 𝜙𝜙𝑋𝑋𝑋𝑋�

2

(𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹𝐻𝐻 ∙ 𝜙𝜙𝐹𝐹𝐹𝐹𝐹𝐹)�𝜙𝜙𝑋𝑋𝑋𝑋𝐻𝐻 ∙ 𝜙𝜙𝑋𝑋𝑋𝑋�  
 (2)  

where the subindex ‘H’ indicates complex conjugate.  

If a set of mode shapes are compared, a MAC matrix is obtained, which can be presented in different 
formats: matrix, table, 2D or 3D plot. 

Closely spaced modes are highly sensitive to small mass and stiffness perturbations of the system, and 
they mainly rotate in their subspace [1,2,3]. Thus, we can have a good correlation in terms of mass and 
stiffness between the compared models, but low values of MAC can be obtained because of this rotation. 
This means that for closely spaced modes, correlation between different identification estimates or 
between a numerical model and an experimental model, should be calculated between subspaces and 
not between the individual mode shape vectors [2,3].  

According to the structural dynamic modification (SDM) [6], the experimental mode shapes can be 
expressed as a linear combination of the numerical mode shapes, i.e.: 

𝝓𝝓𝑿𝑿 = 𝝓𝝓𝑭𝑭𝑭𝑭𝑻𝑻 (3)  

where 𝑻𝑻 is a transformation matrix. 

If mass normalized mode shapes are used in eq. (3) to estimate the matrix T, it was demonstrated in [2] 
that, in case of closely spaced modes, matrix T is related to the rotation matrix R as: 

𝑻𝑻 = 𝑹𝑹𝑻𝑻 (4)  

In closely spaced modes the mode shapes mainly rotate in a subspace, a measure of the correlation can 
be obtained by means of the maximum angle 𝜃𝜃 between the subspaces defined by the experimental 𝝓𝝓𝑿𝑿 
and the numerical 𝝓𝝓𝑭𝑭𝑭𝑭 closely spaced mode shapes. This angle can be expressed as a MAC value [4,5] 
by: 

𝑀𝑀𝑀𝑀𝑀𝑀 = cos2(𝜃𝜃) (5)  

If the correlation is measured using MAC, the experimental mode shapes must be previously rotated in 
the subspace in order to get the best correlation between the experimental and the numerical mode 
shapes [2,3].  
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D’ambrogio and Fregolent [7] proposed the concept of S2MAC, similar to the MAC between two modal 
vectors, to correlate an experimental mode shape 𝜙𝜙𝑋𝑋 with a linear combination of two numerical closely 
spaced mode shapes 𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭 and 𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭, which is expressed as:  

𝑆𝑆2𝑀𝑀𝑀𝑀𝑀𝑀 = max
𝛼𝛼,𝛽𝛽

�
�𝝓𝝓 𝑿𝑿

𝑯𝑯 (𝛼𝛼𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭 + 𝛽𝛽𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭)�2

𝝓𝝓 𝑿𝑿
𝑯𝑯𝝓𝝓𝑿𝑿(𝛼𝛼𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭 + 𝛽𝛽𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭)𝐻𝐻(𝛼𝛼𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭 + 𝛽𝛽𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭)

� (6)  

If case of normal modes, eq. (6) leads to: 

𝑆𝑆2𝑀𝑀𝑀𝑀𝑀𝑀 =
�𝝓𝝓𝑿𝑿

𝑻𝑻𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭�
𝑭𝑭 − 2�𝝓𝝓𝑿𝑿

𝑻𝑻𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭��𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭
𝑻𝑻 𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭��𝝓𝝓𝑿𝑿

𝑻𝑻𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭� + �𝝓𝝓𝑿𝑿
𝑻𝑻𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭�

𝑭𝑭

1 − �𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭
𝑻𝑻 𝝓𝝓𝑭𝑭𝑭𝑭𝑭𝑭�

𝑭𝑭  (7)  

In this paper, three cases with closely spaced modes are studied. Firstly, a 4 DOF system with two 
repeated modes is perturbed with small mass changes. Then, the experimental modal parameters of a 
square laminated glass plate are used for correlating the results of a numerical model assembled in 
ANSYS [8]. Finally, the experimental modal parameters of a symmetric lab-scaled two-floor steel 
frame are compared with those extracted from a numerical model also assembled in ABAQUS [9]. 

2. A SIMULATION CASE 

A 4 DOF system (system U) with two repeated eigenvalues was simulated with MATLAB [10]. The 
natural frequencies and the mode shapes are shown in Tables 1 and 2, respectively. The mass and the 
stiffness matrices were calculated from the eigenvalues and the eigenvectors. However, the solution of 
the eigenvalue problem gives same eigenvalues but a different set of mode shapes (see Table 3). 
Nevertheless, the mode shapes in Table 3 are linear combinations of those shown in Table 2. 

 
Table 1. Natural frequencies of the two simulated systems. 

Frequencies [Hz] 

System U System P Error [%] 
0.4502 0.4408 4.12 
0.4502 0.4479 1.03 
0.5513 0.5409 3.74 
0.6164 0.6060 3.34 

 

Table 2. Mode shapes of system U (original) 

0.3000 0.5000 1.0000 1.0000 
0.8000 1.2000 0.0000 -1.0000 
1.1000 0.1000 -1.0000 1.0000 
1.5000 -1.0000 1.0000 -0.8000 

 

Table 3. Mode shapes of system U (after solution of the eigenvalue problem) 

-0.4507 0.3700 1.0000 -1.0000 
-1.1569 0.8611 0.0000 1.0000 
-1.0696 -0.2757 -1.0000 -1.0000 
-1.0764 -1.4462 1.0000 0.8000 
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This system U was perturbed with small mass changes, the mass change matrix being presented in Table 
4.  The natural frequencies of the perturbed system (system P) are shown in Table 1. 

 

Table 4.Mass change matrix (kg) 

0.0170 0 0 0 
0 0 0 0 
0 0 0.0120 0 
0 0 0 0.0100 

 

The MAC matrix between the mode shapes of both systems (perturbed and unperturbed from Table 3) 
presented in Table 5. As it can be observed, the correlation between the first two modes is very poor. 

 

Table 5. MAC 

0.6979 0.3807 0.0135 0.0233 
0.4990 0.4177 0.0620 0.0082 
0.0660 0.0128 0.9993 0.0509 
0.0272 0.0002 0.0631 0.9985 

 

The rotation matrix presented in Table 7 was estimated from the transformation matrix  𝑻𝑻 obtained 
with eq. (3), and which is shown in Table 6. Mass normalized numerical and experimental mode 
shapes were used to estimate the matrix  𝑻𝑻.  

 

Table 6. T matrix  

0.7390 -0.6522 0.0152 -0.0257 
0.6421 0.7506 0.0141 0.0310 
-0.0138 -0.0001 0.9809 -0.0139 
-0.0007 -0.0217 0.0111 0.9826 

 

Table 7. Rotation matrix 

0.7549 0.6559 
-0.6559 0.7548 

 

This rotation matrix (Table 7) was used to rotate 40.98º the perturbed closely spaced mode shapes by:  

𝝓𝝓𝑹𝑹 = 𝝓𝝓 𝑹𝑹𝑻𝑻 (8)  

in order to obtain the best fit between the unperturbed and the perturbed mode shapes. 

The new MAC obtained after the rotation of the mode shapes is shown in Table 8, where it can be 
observed that a very good correlation exists between both systems, which confirms that the 
discrepancies in terms of mass and stiffness are very low. The angle between the subspaces spanned by 
the closely spaced modes is 1.4727º (MAC=0.9993), which confirms the slight discrepancies between 
the two models. The angle between the first and the second unperturbed mode shapes is 78.4º, whereas 
that between the corresponding perturbed mode shapes is 79.05 º.  
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Table 8. MAC after rotation  

0.9998 0.0383 0.0135 0.0233 
0.0382 0.9995 0.0620 0.0082 
0.0194 0.0764 0.9993 0.0509 
0.0147 0.0186 0.0631 0.9985 

3. A SQUARE LAMINATED GLASS PLATE 

In this section, a square laminated glass plate with dimmensions 1400 x 1400 mm, and consisting of 
two glass layers with thickness 4 mm, and one polymeric interlayer with   thickness 1.14 mm, is studied. 
The plate was fixed to a steel frame at the four corners (see Fig. 1). 

A 3D finite element model was assembled in ANSYS using 20 node structural solid elements of type 
SOLID186 (see Fig. 2). The finite element model was meshed with 19200 elements and 97767 nodes. 
The numerical natural frequencies are shown in Table 9, and as it can be observed, modes 2 and 3 have 
repeated frequencies. The modes shapes are presented in Fig. 3. 

 

 
Figure 1. Data set used in the experiments. 

The natural frequencies and the mode shapes were also estimated with operational modal analysis, The 
responses were measured with 16 accelerometers with a sensitivity of 100mV/g and registered with a 
TEAC LX-120 data recorder with 16 input channels. The plate was excited applying many randon small 
hits across the surface. The natural frequencies estimated with the EFDD (frequency domain 
decomposition) technique are shown in Table 9. 

 
Table 9. Natural frequencies of the laminated glass plate. 

Mode Shapes Experimental 
[Hz] 

Numerical 
[Hz] 

Error 
[%] 

Mode 1 9.35 9.72 3.80 
Mode 2 19.62 21.10 7.01 
Mode 3 19.83 21.12 6.10 
Mode 4 22.53 24.82 9.22 
Mode 5 55.76 56.11 0.62 
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Figure 2. Numerical model. 

 

 
Figure 3. Numerical mode shapes 

The MAC between the experimental and the numerical mode shapes is presented Table 10. As it can be 
observed there is no good correlation between the experimental and numerical models for the second 
the third modes.  

 
Table 10. MAC. 

0.9971 0.0000 0.0000 0.0000 0.0661 
0.0000 0.5990 0.5099 0.0001 0.0002 
0.0001 0.3965 0.4896 0.0000 0.0007 
0.0000 0.0000 0.0002 0.9996 0.0000 
0.0976 0.0001 0.0000 0.0000 0.9862 

 

It can be seen Figure 4 that modes 2 and 3 are physically rotated, which explains the bad correlation 
between these two modes. 

From the transformation matrix 𝑻𝑻 (see Table 11), the rotation matrix shown in Table 12 was obtained 
using the same procedure presented in section 2. Mass normalized numerical mode shapes and 
experimental mode shapes normalized to the largest component equal to unity were used to estimate 
the matrix 𝑻𝑻.  From Table 12 it is inferred that the rotation angle is approximately 42.5º. 
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Figure 4. Numerical and experimental mode shapes 2 and 3 

 
Table 11. 𝑻𝑻 matrix. 

1.4818 0.0063 -0.0065 -0.0006 0.0414 
0.0018 0.9253 -0.8563 0.0111 0.0178 
-0.0107 0.7523 0.8395 -0.0039 0.0313 
-0.0011 0.0064 -0.0140 -0.9801 0.0005 
-0.0327 0.0101 -0.0041 0.0011 1.0582 

 
Table 12. Rotation matrix. 

0.7379 0.6479 
-0.6479 0.7379 

 

Finally, the MAC between the rotated experimental mode shapes and the numerical mode shapes (Table 
13) show a very good correlation between the two models. 

An alternative to MAC is to calculate the angle between the subspaces spanned by the closely spaced 
modes. It is also interested to know if there is a relative deviation between the closely spaced 
eigenvectors (perfect rotation means no deviation). For this example, the angle between the subspaces 
spanned by the second and the third modes is 3.8203º (MAC= 0.9956). With respect to the angle 
between the second and the third numerical mode shapes, they are perfectly orthogonal (angle 90º), 
whereas in the experimental system the angle is 89.158º. These values confirm the good correlation 
between the two models in terms of mode shapes. 

 
Table 13. MAC after rotation. 

0.9971 0.0000 0.0000 0.0000 0.0661 
0.0000 0.9965 0.0000 0.0001 0.0002 
0.0001 0.0001 0.9974 0.0000 0.0007 
0.0000 0.0002 0.0001 0.9996 0.0000 
0.0976 0.0000 0.0000 0.0000 0.9862 

4. A LAB-SCALED TWO-FLOOR STEEL FRAME  

In this section a small symmetric lab scaled steel frame is studied (see Fig.5).  The structure consists of 
four columns with square section 5 x 5 mm2 and length 80 mm, and two square steel floors with 
thickness 5 mm and dimensions 30mm x 30mm. 
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Figure 5. Two-floor steel frame structure. 

A model of the structure was assembled in ABAQUS and meshed with beam elements B33 (columns) 
and quadrilateral shell elements S4R (floors). The numerical natural frequencies are shown in Table 14 
and the mode shapes in Fig 6. 

The experimental modal parameters were estimated with operational modal analysis. The response of 
the structure was measured with 6 accelerometers with a sensitivity of 100mV/g and registered with a 
TEAC LX-120 data recorder. The natural frequencies estimated with the EFDD technique are also 
shown in Table 14. 

 
Table 14. Experimental and natural frequencies 

Mode Shapes Experimental 
[Hz] 

Numerical 
[Hz] 

Error 
[%] 

Mode 1- 1st bending 4.2200 4.2490 0.69 
Mode 2- 1st bending 4.4280 4.2490 4.04 

Mode 3-torsion 7.6735 7.8572 2.39 
Mode 4-2nd bending 11.1262 11.680 4.98 
Mode 5-2nd bending 11.3784 11.680 2.65 

Mode 6-torsion 20.2675 21.401 5.59 
 

Table 15. MAC. 

0.9968 0.0026 0.0017 0.0004 0.0003 0.0000 
0.0042 0.9773 0.3618 0.0001 0.0003 0.0066 
0.0019 0.3708 0.9963 0.0001 0.0000 0.0003 
0.0002 0.0000 0.0001 0.9013 0.0985 0.0346 
0.0000 0.0006 0.0012 0.3132 0.6827 0.2030 
0.0001 0.0022 0.0001 0.0002 0.3515 0.9992 

 

Due to the symmetry of the structure, all the bending modes are repeated (see Fig. 6), i.e.  modes 1 and 
2 has repeated frequencies, and the same for modes 4 and 5. MAC between the numerical and 
experimental mode shapes are presented in Table 15.  
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Figure 6. Numerical mode shapes. 

 

 
Figure 7. Numerical and experimental mode shapes 4 and 5. 

 

Table 16. 𝑻𝑻 matrix. 

-0.0697 0.0026 -0.0011 0.0001 0.0000 -0.0001 
-0.0040 -0.0610 -0.0020 -0.0001 -0.0002 0.0000 
0.0005 0.0012 0.0196 -0.0001 -0.0002 0.0000 
0.0002 -0.0004 0.0002 -0.0095 -0.0021 -0.0001 
-0.0013 -0.0037 0.0004 0.0044 -0.0045 -0.0002 
0.0002 0.0039 -0.0001 0.0001 0.0001 -0.0043 
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Mass normalized numerical mode shapes and experimental mode shapes normalized to the unit length 
were used to estimate the matrix 𝑻𝑻 (see Table 16), from which the rotation matrix shown in Table 17 
was obtained using the same procedure presented in section 2.  From Table 17 itis inferred that the first 
bending modes were rotated 3.5º and the second bending modes were rotated approximately 24.7º. 

 
Table 17. Rotation matrix 

-0.9981 -0.0580 0.0000 0.0000 0.0000 0.0000 
0.0580 -0.9981 0.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 -0.9082 0.4183 0.0000 
0.0000 0.0000 0.0000 -0.4183 -0.9082 0.0000 
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 

 

It can be seen in Table 18 that the MAC has improved for both the first and the second bending modes. 
The angles between the subspaces spanned by the closely spaced modes are 7.8436º (MAC = 0.9814). 
for modes 1 and 2 and 3.7228º (MAC = 0.9958) for modes 4 and 5. In the numerical model, all the 
bending modes are orthogonal (angle 90º), whereas in the experimental system the angle between the 
first bending modes is 87.65º, and 75.96º between the fourth and fifth modes.  

A relatively low MAC has been obtained between the mode shapes of the fifth modes. On the other 
hand, the fourth and fifth experimental mode shapes are far from orthogonal, as it is the case in the 
numerical model. This can be attributed to discrepancies between the models or to errors in the 
estimation of the mode shapes. 

 
Table 18. MAC after rotation. 

0.9997 0.0001 0.0001 0.0004 0.0001 0.0000 
0.0011 0.9864 0.3652 0.0001 0.0001 0.0030 
0.0013 0.3710 0.9970 0.0001 0.0000 0.0003 
0.0002 0.0000 0.0002 0.9737 0.0259 0.0103 
0.0001 0.0006 0.0004 0.1984 0.8001 0.2510 
0.0001 0.0022 0.0001 0.0002 0.3515 0.9992 

5. CONCLUSIONS 

According to the structural dynamic modification, an experimental system can be considered as a 
perturbation of a numerical model. When a numerical system with closely spaced eigenvalues is 
perturbed, the associated mode shapes are mainly rotating in their initial subspace [1,2,3]. This means 
that low MAC values can be obtained although a good correlation can exist in terms of mass and 
stiffness.  

In order to obtain the best correlation in terms of MAC, the mode shapes have to be previously rotated. 
In this paper, the mode shapes of three models with closely eigenvalues have been successfully rotated 
to obtain the best correlation in terms of MAC. The first model was a simulated case with two repeated 
eigenvalues, which was perturbed with small mass changes. The other two models are experimental 
models with closely spaced modes which are correlated with two numerical models assembled in 
ANSYS and ABAQUS. The results have demonstrated that a good correlation exist between the 
numerical and the experimental models. 
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ABSTRACT 

Detecting damage in structural systems is often achieved by a statistical comparison of damage-

sensitive characteristics of a structure evaluated on baseline data, against the corresponding 

characteristics obtained using data collected from a potentially defective structure. While several 

vibration-based methods have been proposed and successfully applied to detect damage in both 

mechanical and civil structures over the past years, the general framework describing their common 

properties and unifying the statistical decision about damage has mainly been elaborated in the control 

community. In this paper, we revise this framework in the context of detecting damage in structural 

systems. The statistical properties of three commonly used damage detection methods are recalled, and 

it is shown that their evaluation for damage boils down to a simple statistical distance. The framework 

is adopted to a commercial structural health monitoring software suite and its practical merit is 

illustrated on damage detection of two full-scale highway bridges. 

Keywords: Damage detection, squared Mahalanobis distance, subspace methods, mode tracking, 

control chart, Structural Health Monitoring, Operational Modal Analysis 

1. INTRODUCTION 

Vibration-based damage detection refers to detecting damage through changes in a set of features 

extracted from the vibration signals collected from structural health monitoring (SHM) systems. Over 

the past decade, it became an effective methodology in triggering on-demand inspections after 

damaging events in large-scale civil and mechanical structures, e.g., wind turbines [1,2], offshore 

structures [3,4], and bridges [5,6]. It remains the sole aspect of the SHM triad, i.e., damage detection, 

localization, and quantification, that has been implemented in commercial software such as ARTeMIS 

Modal Pro [7] and PULSE™ Operational Modal Analysis [8]. 
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In the field of fault diagnosis of mechanical systems, myriads of different vibration-based damage 

detection methods exist; see [9] for a review of early developments. Commercially available methods 

often use the modal approach, which presumes that the damage is manifested through a change in the 

modal parameters, i.e., the natural frequencies, damping ratios and mode shapes. The modal parameters 

are typically identified from measured data and compared to baseline values using statistical distance 

measures. However, some field work questions the use of the modal parameters as damage-sensitive 

features, arguing that they are not sensitive enough to identify local faults [1,2], especially if the 

structure is only excited by low-frequency inputs. One bypass to the modal framework employed in the 

commercial software, is to use the statistical fault detection and isolation methods [10,11], where the 

damage-sensitive features of the system are derived directly from measured data and comprise, e.g., 

angles between dynamic signal spaces, and are evaluated for damage in statistical hypothesis tests. 

While efficient in detecting damage, the practical use and interpretation of the latter methodology is 

often hindered by its complex mathematical formulation. 

The goal of this paper is to illustrate that the current commercial practice for the vibration-based damage 

detection boils down to a simple statistical distance obtained from a residual evaluated between some 

baseline (reference) features of the system and the features from the currently tested data. In this context, 

three damage detection residuals are investigated, namely, the classic subspace-based residual [12], the 

robust subspace-based residual [10], and the modal parameter-based residual [13]. Each metric is 

calculated based on vibration data collected during normal operating conditions, and the damage is 

denoted as deviations of the distance measure from the reference state. The considered methods are 

implemented in the modal analysis and structural health monitoring software packages ARTeMIS 

Modal and PULSE Operational Modal Analysis, in which their joint features are concluded in a control 

chart to enhance the resolution of the damage detection. Methods are evaluated based on the ambient 

vibration signals from two benchmark structures, that is, the Z24 bridge in Switzerland and the S101 

bridge in Austria. The results reveal that the performance of the damage detection methods is similar 

and the fusion of the damage indicators in the control chart provides the most accurate view on the 

progressively damaged systems. The paper is organized as follows: Section 2 recaps the statistical tests 

for damage detection, Section 3 contains two cases studies and Section 4 discusses the results.  

2. METHODOLOGY 

In this section, the background on output-only vibration analysis of mechanical systems is recalled, the 

definition of three different damage detection residuals is outlined and the general framework for the 

statistical decision-making about damage is stated. 

2.1. Background 

A fundamental step in damage detection is the evaluation of the dynamic features of the system from 

monitoring data, so that their changes can be related to the occurrence of damage. To this end, many 

classical features used for damage detection originate from system identification and comprise, e.g., 

subspace characteristics of data matrices, or modal parameters, where both can be obtained from the 

response measurements, e.g., accelerations, velocities, displacements, inclinations, or strains.  

 

Consider N acceleration measurements 𝑦 = [𝑦1 …𝑦𝑁]𝑇 ∈ R𝑟x𝑁 collected using 𝑟 sensors sampling the 

dynamic response of the monitored linear time-invariant (LTI) dynamic system with a sampling 

frequency 𝑓𝑠. The covariance matrix of the output measurements 𝑅𝑖 = Ε(𝑦𝑘+𝑖yk
T) ∈ R𝑟𝑥𝑟 can be 

structured in the block-Hankel matrix 𝐻 ∈ R(𝑝+1)𝑟 𝑥 𝑞𝑟 as follows: 
 

 

𝐻 =

[
 
 
 

𝑅1 𝑅2

𝑅2 𝑅3

⋯
…

𝑅𝑞

𝑅𝑞+1

⋮ ⋮ ⋱ ⋮
𝑅𝑝+1 𝑅𝑝+2 … 𝑅𝑝+𝑞]

 
 
 

 , (1) 
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where 𝑝 and 𝑞 = 𝑝 + 1 are the parameters that denote the memory of the system. The factorization of 

𝐻 to some low-rank matrices fully describing the dynamics of the underlying LTI mechanical system 

is the cornerstone for obtaining the damage-sensitive features in the SHM methods considered in this 

paper. Assume that the order of the system n=2m is known, where m is the number of modal parameters 

observed in the considered frequency band. The singular value decomposition (SVD) of 𝐻 writes: 
 

 
𝐻 = [𝑈1 𝑈2] [

𝐷1 0
0 𝐷2

] [
𝑉1

𝑇

𝑉2
𝑇], (2) 

 

 

where 𝑈1 ∈ R(𝑝+1)𝑟 𝑥 𝑛and 𝑉1 ∈ R𝑞𝑟 𝑥 𝑛 are called the image and the co-image of a matrix, respectively,  

and correspond to a collection of n left and right singular vectors related to n singular values 𝐷1 ∈

R𝑛 𝑥 𝑛. The matrices 𝑈2 ∈ R(𝑝+1)𝑟 𝑥 (𝑝+1)𝑟−𝑛 and 𝑉2 ∈ R𝑞𝑟 𝑥 𝑞𝑟−𝑛 are called the left and right nullspace 

of a matrix, respectively. They contain the left and right singular vectors that correspond to the singular 

values in 𝐷2 ∈ R(𝑝+1)𝑟−𝑛 𝑥 𝑞𝑟−𝑛 which approximate zero. Their use in the context of the considered 

damage detection methodology is elaborated in Sections 2.2.1 - 2.2.3. 

2.2. Damage detection residuals 

Let 𝜁 denote a damage detection residual obtained from some damage-sensitive features extracted from 

the measurement data in the reference and in the currently tested state and let 𝛴𝜁 be its asymptotic 

covariance matrix. To compare the measurements from the healthy and the tested states, the residual is 

expressed to follow a Gaussian distribution, whose mean value is zero if the features of the currently 

tested system statistically correspond to the baseline features and is different from zero otherwise. The 

definition of the residual depends on the chosen damage detection method. A brief description of the 

damage detection residuals used in this paper is enclosed below. For brevity, only the definition of 

residuals is outlined and not their statistical characteristics, e.g., covariance computation. Regarding 

this, the interested reader is encouraged to refer to the references enclosed in the respective sections. 

2.2.1. Classic subspace-based residual 

The classic subspace-based damage detection residual is defined as a product of a Hankel matrix 

evaluated from the test data 𝐻test and the left nullspace of the Hankel matrix obtained from the baseline 

data 𝑈2
ref [12]. The resultant residual can be written as: 

 

 𝜁 = √𝑁 𝑈2
𝑟𝑒𝑓𝑇

𝐻𝑡𝑒𝑠𝑡. (3) 
 

 

After the left nullspace property, i.e.,  𝑈2
ref𝑇𝐻test  → 0, when the test data statistically corresponds to 

the baseline data, the mean value of the residual (3) is zero when the currently tested data set is classified 

healthy, and it is different from zero when the currently tested data is collected from a damaged 

structure.   

2.2.2. Robust subspace-based residual 

The robust subspace-based residual is defined from a product of images of a Hankel matrix evaluated 

from the test data 𝑈test = 𝑈1
test(𝑈1

test)𝑇 and the left nullspace of the Hankel matrix obtained from the 

baseline data 𝑈2
ref [10]. The resultant residual can be written as: 

 

 𝜁 = √𝑁 𝑈2
ref𝑇𝑈test. (4) 

 

 

Like the classic residual, the mean value of the robust residual is zero when the features obtained from 

the currently tested data corresponds to the baseline features and it is different from zero otherwise. The 

benefit of using the image product 𝑈test in (4) compared to 𝐻test in (3) is that 𝑈test is not heavily 

affected by the noise properties of the singular values and the right singular vectors; a clear drawback 

is its additional computational complexity related to the computation of the covariance matrix. 
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2.2.3. Modal parameter-based residual 

The modal parameter-based residual is defined as the difference between currently estimated modal 

parameters and their reference values obtained from data in a baseline state [13]. Let 𝑥ref and 𝑥test 

contain a stacked and vectorized collection of the modal parameter estimates, e.g., the natural 

frequencies and the mode shapes, obtained from the baseline and the test data using SSI. The modal 

parameter-based residual is defined as: 
 

 𝜁 =  √𝑁(𝑥ref − 𝑥test), (5) 
 

 

The expected value of the residual is zero when the modal parameter estimates obtained from the 

currently tested data and the baseline modal parameter estimates converge to the same expected value. 

Otherwise, the expected value of the residual (5) is different from zero, which signifies the occurrence 

of damage. The computation of the consistent estimates of the joint covariance of the natural frequencies 

and the mode shapes can be found, e.g., in [14, 15], and case studies confirming the Gaussian 

characteristics of modal parameter estimates can be found, e.g., in [16]. 

2.3. General framework for damage detection 

Based on the features extracted from the measurement data in the reference and in the currently tested 

state, the goal of damage detection is to decide whether there is a significant change between the two 

states, i.e., whether the expected value of the residual is statistically zero, or not. This decision can be 

achieved through statistical hypothesis tests, e.g., with Generalized Likelihood Ratio (GLR) test [11], 

or with some statistical distance measures, e.g., squared Mahalanobis distance [17]. For the residuals 

considered in this work, the likelihood ratio statistics boils down to the squared Mahalanobis distance, 

which is used for damage detection in the remainder of this paper. 

The squared Mahalanobis distance describes a squared distance between a point and a distribution. The 

distance is zero if the investigated point is at the mean of the reference distribution, and it is not zero 

otherwise. As such, the metric: 
 

 𝑑 = 𝜁𝑇𝛴𝜁
−1𝜁, (6) 

 

 

can be considered as a dissimilarity measure. When the residual follows an asymptotically Gaussian 

distribution with zero mean: 
 

 𝜁 → N(0, 𝛴𝜁), (7) 
 

 

the currently tested data set is classified healthy, since the expected value of the dissimilarity between 

the baseline features and the tested features is null, and then it is well-known that d follows a central 𝜒2 

distribution [17]. When the system has undergone a change and the expected value of the residual is not 

zero but 𝛿, then 
 

 𝜁 → N(𝛿, 𝛴𝜁), (8) 
 

the currently tested data set is classified as damaged, and d follows a noncentral 𝜒2 distribution [17]. 

Residuals (3 - 5) satisfy properties (7 - 8) and consequently can be used for statistical damage diagnosis 

with the squared Mahalanobis distance (6). To decide about the damage, the value of the distance 

statistics is compared to a quantile of the distribution of the test derived from the baseline data. This 

quantile is evaluated for some confidence level 𝛼, where 1- 𝛼 denotes the statistical significance level, 

i.e., the probability of false alarms to occur. The general premise of this statistical framework is 

illustrated in Figure 1.  

To simplify the decision about damage, the squared Mahalanobis distance statistics obtained from 

different damage detection residuals are combined in a Hotelling T2 control chart [6]. The control chart 

statistics are computed from the sample mean and the sample covariance obtained from the test statistics 

of each damage detection residual.  
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Figure 1. Decision framework for damage detection 

3. CASE STUDIES 

Below, two case studies on highway bridges are presented. 

3.1. Z24 bridge 

The Z24 bridge is a benchmark for many studies involving system identification and damage diagnosis 

[5]. Before its demolition in 1998, a progressive damage campaign was carried out and consisted of a 

series of ambient and forced vibration tests conducted while inducing different kinds of damage on the 

bridge. The vibration tests were conducted with 28 moving and 5 fixed sensors measuring vertical, 

transverse, and lateral accelerations of the bridge. For this study, only the measurements from 5 fixed 

sensors are analysed. The data acquisition was performed with a sampling frequency of 100 Hz and the 

length of each measurement was 655 seconds. A total number of 54 data sets were analysed, from which 

the first 18 measurements were under healthy conditions. Among the first 18 healthy data sets, 6 data 

sets were selected for the reference state computation. For data sets 19 to 36, measurements were 

collected after lowering one of the bridge piers by 20 mm. Data sets 37 to 54 were obtained after 

lowering the same pier by another 20 mm. The view on the bridge with positions and directions of the 

sensors is shown in Figure 2. 

 

 
 

Figure 2. Front and top views of the Z24 bridge (left). Geometry with 5 fixed sensors (right) 

 

The first 9 modes obtained with the Stochastic Subspace Identification – Extended Unweighted 

Principal Components (SSI–UPCX) method and tracked across the 54 data sets are shown in Figure 3. 
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Figure 3. Modal parameters of the Z24 bridge tracked across the 54 data sets. Natural frequencies shown 

 

The mean values of the corresponding natural frequencies and the mode shape estimates obtained over 

the first 6 data sets are used to establish a baseline (reference) for the modal parameter-based damage 

detection (5). The remaining 48 data sets are used for damage testing with the squared Mahalanobis 

distance (6). The resultant damage indicators are presented in Figure 4. Three decision zones are shown. 

The ’safe zone‘ is shown with green colour and indicates that the corresponding test values lie within 

the 95% quantile of the reference distribution statistics, the ’critical zone‘ shown with yellow colour 

indicates that the test values lie between the 95% quantile and the 99% quantile of the reference 

distribution, and the ’unsafe zone‘ shown with red colour indicates that the corresponding test values 

exceed the 99% quantile of the reference distribution. 

Figure 4 illustrates that one test value corresponding to data collected from the bridge in an undamaged 

state has exceeded the 99% quantile threshold, falsely alarming damage. This is most likely caused by 

a missing tracked mode of the fourth and the seventh modes. Overall, however, the damage, after its 

inception, is well detected. 

 

 
 

Figure 4. Damage detection with modal parameters (5) using Z24 bridge data 

 

The results of damage diagnosis with the classic subspace residual are studied next. The first 6 data sets 

are used to obtain the baseline features. The output covariance Hankel matrix of both the reference and 

the test data set is obtained with 𝑝 = 7 and the reference left nullspace is estimated with 𝑛 = 20. The 
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covariance of the residual is obtained after the first-order perturbation analysis of the residual, and the 

sample covariance of the Hankel matrix is computed by splitting data to 200 independent segments. 

The resultant damage indicators are illustrated in Figure 5. Despite few healthy data sets are classified 

to critical regions no false alarms occur, and all damage scenarios are detected.  

 

 
 

Figure 5. Damage detection with the classic residual (6) using Z24 bridge data 

 

Lastly, the performance of the robust damage detection residual is studied. In this context, the 

parameters to obtain the baseline and the test features remain the same as in the classic subspace 

residual. The resultant damage indicators are illustrated in Figure 6. One can observe that while the 

damage indicators corresponding to the healthy data are classified to the safe region, damage in data 

sets 21 and 22 is undetected.  

 

 
 

Figure 6. Damage detection with the robust residual (7) using Z24 bridge data 

 

As the studied residuals have different statistical properties, the results also differ. To simplify the 

decision making about damage and to enhance the performance of the damage detection, the indicators 

from all the residuals are joined in a Hotelling T2 control chart, which is illustrated in Figure 7. The 

fusion of the methods in a control chart results in an increased resolution of the damage detection, 

allowing to distinguish different types of damage, while retaining no false alarms in the healthy state.   
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Figure 7. Fusion of damage indicators in a Hotelling T2 control chart, Z24 bridge 

 

3.2. S101 bridge 

The S101 was a prestressed concrete bridge located in Reibersdorf, Austria. With the main span of 32 

m, side spans of 12 m, and a width of 6.6 m, it crossed the national highway A1 Westautobahn. Built 

in 1960, it had to be demolished due to structural problems and to allow space for additional lanes on 

the highway underneath. That created an opportunity for conducting progressive structural damage 

tests. The bridge was artificially damaged and monitored within the Integrated European Industrial Risk 

Reduction System research project [18]. 

The measurement campaign was conducted by Vienna Consulting Engineers ZT GmbH (VCE) [19] 

and the University of Tokyo. The purpose of the campaign was to demonstrate the impact of scientific 

insight and findings with regards to the rehabilitation measures and cost planning of the transportation 

infrastructure. Acceleration responses were recorded using 15 triaxial sensors mounted on the bridge 

deck. The bridge was monitored continuously from the 10th to the 13th of December 2008. A sampling 

frequency of 500 Hz was used and a total of 714 data sets with 165k samples in each were acquired. 

The bridge was closed for any traffic during the progressive damage testing. As a result, the main source 

of ambient excitation was wind and the vibrations from traffic on the highway beneath the bridge. The 

structural damages introduced in the bridge were of several types and locations. Two major damage 

scenarios can be distinguished, as outlined in Table 1. 

 
Table 1. Damage scenarios during the progressive damage test of the S101 bridge 

 

Case 1  Damages Sets Case 2 Damages Sets 

A First cut through the left pier  5 G Inserting steel plates 45 

B Second cut through the left pier 15 H 2nd tendon cut 178 

C Settlement of the left pier (1st) – 1cm  10 I 2nd tendon cut 178 

D Settlement of the left pier (2nd) – 2cm  21 J 3rd tendon cut 23 

E Settlement of the left pier (3rd) – 3cm 9 K 
4th tendon partly 
intersected 

6 

F Lifting the left pier – 6mm  186    
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Figure 8. The S101 bridge. Locations of introduced damage are marked in the figure around the north side pier 

(www.vce.at/iris/) 

 
The first 4 modes obtained with the SSI–UPCX method and tracked across the 681 data sets are shown 

in Figure 9. 

 

 
 

Figure 9. Modal parameters of the S101 bridge tracked across the 681 data sets. Natural frequencies shown 

 

 

 
 

Figure 10. Damage detection with modal parameters (5) using S101 bridge data 
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The mean values of the corresponding natural frequencies and the mode shape estimates obtained over 

the first 60 data sets are used to establish a baseline (reference) for the modal parameter-based damage 

detection (5). The remaining 621 data sets are used for damage testing with the squared Mahalanobis 

distance (6). The resultant damage indicators are presented in Figure 10. There are a few false alarms 

in the reference part of the data sets, but there is a significant increase in the damage indicators when 

damage scenario A is introduced. The damage indicators stay high throughout the remaining data sets. 

The results of damage diagnosis with the classic subspace residual are studied next. The first 100 data 

sets are used to obtain the baseline features. The output covariance Hankel matrix of both the reference 

and the test data set is obtained with 𝑝 = 8 and the reference left nullspace is estimated with 𝑛 = 30. 

The covariance of the residual is obtained after the first-order perturbation analysis of the residual, and 

the sample covariance of the Hankel matrix is computed by splitting data to 200 independent segments. 

The resultant damage indicators are illustrated in Figure 11. Despite several false alarms in the reference 

state, the classic subspace damage indicator reacts heavily when damage is introduced. The results 

exceed the 99% quantile of the reference distribution for most of the damage cases. However, a small 

drop between damage cases I and J can be observed. This might be caused by insufficient excitation of 

the bridge at night.  

 

 
 

Figure 11. Damage detection with the classic residual (6) using S101 bridge data 

 

The modal parameter-based and classic subspace damage indicators are fused in the control chart shown 

in Figure 12. The control chart compensates for the drawbacks of each of the two individual damage 

indicators. There are few false alarms in the reference data sets. However, there is a clear reaction to 

the damage introduced. 
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Figure 12. Fusion of damage indicators in a Hotelling T2 control chart, S101 bridge 

 

4. DISCUSSION 

The case studies clearly reason for a parallel analysis of multiple damage indicators. Each indicator has 

its shortcomings, directly related to the statistical properties of the underlying damage diagnosis residual 

[20]. Consequently, the choice of the method for an SHM system, before the actual analysis is 

performed, is not trivial. To enhance the reliability of the damage detection and simplify the decision 

about damage, the fusion of damage indicators in a control chart is beneficial, as demonstrated by the 

case studies. Additionally, some practical strategies to interpret false alarms can be developed, e.g., by 

using the fact that false alarms typically do not happen in consecutive data sets. Hence, an alert can be 

delayed until the next data set is processed, and the alarm occurs again. Furthermore, signal processing 

techniques exist to remove varying disturbances from the system dynamics by denoising Hankel 

matrices [21]. 

5. CONCLUSION 

This paper presents a comparative study on three different damage detection residuals, i.e. the classic 

subspace-based residual, the robust subspace-based residual, and the modal parameter-based residual. 

To determine the health of structural systems, all three residuals are evaluated in a simple statistical 

test, which boils down to the squared Mahalanobis distance. The performance of each damage detection 

residual is compared using data from the Z24 and S101 highway bridges, where the capability of each 

method to detect the damages and to be ready to deploy in online SHM systems is shown. The fusion 

of the methods in a Hotelling T2 control chart resulted in the most effective detection of damage. In 

addition, it was discussed how to interpret and avoid false alarms in SHM systems. 
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ABSTRACT 

Structural control monitoring is by now widely used in engineering structural field as safety’s control 
approach and is also employed in procedure’s assessment for conservation of Cultural Heritage as well 
as historic constructions and monuments. By the way, the research proposes an optimization procedure 
through OMA approach and specific sensors (tromograph velocimeters) which transform ambient 
vibrations (wind, traffic, pedestrian noise, ground’s microseismic effects, common urban sounds, etc 
etc.) in term of sensitive information. In detail, the results of a structural survey of an Italian UNESCO 
Baroque church are showed. The results, through experimental modal analysis, frequency peak, 
fundamental frequency and mode shapes, obtained by means Operational Modal Analysis approach, are 
discussed. The obtained information appear partially critical from the completion point of view, but very 
useful in presence of the need of a rapid assessment and a speditive analysis. Particularly, outcomes 
allow to understand the identification of macro-structural elements, with a focus regarding the Façade.  

Keywords: SCM, OMA, heritage, AVMs, microtremor, ambient vibrations 
 

1. INTRODUCTION 
 

The structural control of any construction, and particularly of historic ones, has been always strategic 
and has become a highly significant topic over the last forty years [1]. Nowadays, non-destructive (ND) 
tests are of fundamental importance in structural health monitoring (SHM) practices, since they can 
provide valuable information about material and structural properties such as resonance frequency, 
modal shapes and damping of the historical building [2]. 
The aim of this work is to evaluate the different positioning of one or more sensors, synchronized or 
not, for a rapid structural diagnosis in existing historic construction with an OMA approach. The 
frequency peaks are defined to assess if the control scheme is optimal to obtain the correct information 
with the less number of sensors. For each measurement is possible to evaluate the value and the 
amplitude of the related peak, and correlate this information to the structural features of the building. In 
particular, the micro tremors are considered constant, this hypothesis accounts for the signal 
synchronization and allows for the recording of the correct relative displacements along the measuring 
points. 
The case of study is the San Giorgio Church in Ragusa (Italy) (Figure 1), a UNESCO Cultural World 
Heritage site. The building investigated is one of the most important examples of Sicilian Baroque 
architecture, built by Rosario Gagliardi in XVIII century. It is located on the Hyblean Plateu, famous 
for one of the most powerful and destructive earthquakes in Italian history [3], which occurred in 
1693[4] (Mw 7). The high seismicity of the area where the structure is located highlights the need to 
perform studies aimed at the dynamic characterization of the structure and the subsoil on which it is 
built [5]. In the present study, the horizontal to vertical spectral ratio (HVSR) and the standard spectral 
ratio (SSR) techniques have been used to identify the site and the building’s fundamental frequencies 
respectively [6]. In particular, the masonry macro elements investigated with ambient vibration 
measurements (AVMs) in the current study are the Dome, the right lateral Nave and the Façade. 
Fundamental frequencies of each macro element were obtained to highlight the mutual interaction 
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between them, following the typical features of masonry structure behaviour. Also, an in-depth analysis 
regarding the Façade is discussed to compare the results obtained through SSR technique with two of 
the most common dynamic identification algorithms (e.g. EFDD, SSI). 
 

2. DESCRIPTION OF THE CASE STUDY 
 

 
Figure 1. View of the Church of San Giorgio 

The interior of the Basilica has a Latin cross layout and consists of three aisles divided by two rows of 
ten pillars each with a transept and a semi-circular apse. The main dimensions are approximatively 
27x68m, and the highest point is located on the dome, which is 43m high (see Figure2). The dome has 
a diameter of almost 12m and is founded on 4 pillars with an octagonal plan. It culminates with a lantern 
on the top and has uniquely distinctive blue stained-glass. The Façade (see Figure 2) is of the “tower” 
type and consists of 3 levels separated by three orders of columns, with the central one slightly convex. 
The bell tower is incorporated, and ends at the top with a bulb cusp, typical of Capuchin churches. 

 
3. ANALYTICAL APPROACH 

 
In literature, OMA approaches provide many algorithms to identify the modal parameters, applied to 
masonry historic buildings [7]. Firstly, the eigenvalue problem need to be solved (Eq.1): 

𝐾 𝜔 𝑀 𝜙 0 (1)
 
Where [K] and [M ] are matrix of stiffness and mass of the system, 𝜔 is the circular natural frequency 
and 𝜙  is the eigenvector or mode shape. Basically, output-only identification methods to resolve the 
eigenequation work with an unknown input through a process of inversion, deriving the properties of 
the structure from experimental output. 
Given the matrix H (ω) as the representation of the dynamic system and equivalent to the ratio between 
the system’s response and the stress the excites (Eq.2): 

𝐻 𝜔
𝑣 〈𝑙 〉

𝑗𝜔 𝜆
𝑣∗ 〈𝑙 〉

𝑗𝜔 𝜆
 

(2)

 
The response of the system itself to a dynamic stress is represented in the domain of frequencies by the 
well-known matrix Syy (Eq.3) 

𝑆 𝑗𝜔 𝐻 𝜔 𝑆 𝜔 𝐻 𝜔  (3)
 
and in operative conditions where the input spectrum is of unknown entity, the central term of Eq.3 is 
actually constant and is thus independent from the frequency (Eq.4): 
  

𝑆 𝑗𝜔 𝐻 𝜔 𝑆 𝐻 𝜔  (4)
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The last equation allows for analytical definition of the relationship between the system’s response 
spectrum and its modal parameters [8]. To solve these problems, a large number of algorithms have 
been developed such as Peak-Picking (PP), Enhanced Frequency Domain Decomposition (EFDD) [9], 
Stochastic Subspace Identification (SSI) [10]. Following the expeditious way of the entire method used 
in this work, PP algorithm has been performed to identify the frequency peaks present in the acceleration 
spectra. In addition, to validate the expeditive approach results, a comparison in term of peak frequency 
and mode shapes with the other two algorithms mentioned is present (e.g. EFDD, SSI). 
The investigative technique adopted in this work is passive seismic single station, based on micro tremor 
recordings performed with a Tromino device in a range of frequency from 0.1 Hz to 1024 Hz [11]. As 
is currently performed in the OMA approaches, the signal’s source is Ambient Vibration or Micro 
tremor. This type of noise is a combination of Rayleigh and body waves and its displacements are in the 
order of 10-4 – 10-3 cm [9]. The environmental noise may be caused by natural ( e.g. microseisms, wind, 
marine waves) or anthropic origins (e.g. human activities, car, pedestrian traffic, industrial machinery): 
in the first case the value is less than 1 Hz, while in the second case one his value is above 1 Hz. This 
approach is used also to determine site effects, employs the Fast Fourier Transform (FFT) to obtain the 
spectrum [12], whose the mathematical function is expressed as follows (Eq.5,6) where f is frequency 
and t is time: 
 

ℎ 𝑡 𝐻 𝑓 𝑒𝑥𝑝 𝑖2𝜋𝑓𝑡 𝑑𝑓 𝐹 𝐻 𝑓  

 

 
(5)

With h(t): (t) variable function; (F) Fourier Transform Function and H (f): 

𝐻 𝑓 ℎ 𝑡′ 𝑒𝑥𝑝 𝑖2𝜋𝑓𝑡′ 𝑑𝑡′ 
 

(6)

Note that h(t) and H(f) represent a pair of particular variables, whose product is 1. This allows the 
Fourier Transform to be expressed as follows (Eq.7): 

ℎ 𝑡 𝑐 𝑒𝑥𝑝 𝑖2𝜋𝑛𝑓 𝑡  
 

(7)

If the period T of such a function tends to infinity, this causes the frequency f0 to zero and that the integral 
form of the Fourier series also applies to non-periodic functions. We can calculate, thus, the Fourier 
spectra of horizontal H and vertical V components of the signal and then the spectral ratio H/V, which 
gives us information about the site resonance frequency [13]. Basically, the H/V technique allows to 
eliminate the effect of noise from the recordings as to obtain a stable curve with the resonance 
frequencies of the ground. The Horizontal to Vertical Spectra Ratio (HVSR) is one of the most common 
approaches to study the relationship between the amplification of seismic waves and site effects, linked 
to the structural damage caused by earthquakes [14]. This method was proposed first by Nakamura [15] 
after preliminary studies by Nogoshi and Igarashi [16] and it uses the ratio of the geometric averaged 
horizontal-to vertical frequency spectrum to identify soil fundamental frequency [17]. The test was 
performed with a tromograph and Fast Fourier Transform (FFT) software, which allows for the 
evaluation of site effects and analysis of related spectra [18]. Recently, this technique, named Standard 
Spectra Ratio (SSR), has been used to obtain the fundamental frequency of buildings and identify 
different modal shapes [19]. The modal frequency response analysis of the structure was carried out 
using deconvolution, a process of subtracting from the motion occurring at the roof level. In SSR 
analysis the spectral ratio was computed between the ambient vibrations (Fourier spectra) of horizontal 
components, recorded at points located on the same vertical at both roof and floor levels, as well as the 
same components recorded at a reference or standard station (EXT1) located outside the church [20]. In 
this regard, it is noted that this procedure is only reliable over a long period [21] or if the noise source 
is the same for the stations in question, including reference (or standard) ones. 
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4. AMBIENT VIBRATION TEST DESIGN – OMA APPROACH 
 

During the experimental campaign, a total of 18 measurements inside the building and 1 external 
measurement (EXT1) were performed to characterize the site by n.6 three-component velocimeter, 
known as tromographs (TROMINO®) (Figure 2d). Among the six devices, each one of them is a stand-
alone portable unit ( ∼10×14×7 cm) but only two of them can be linked each other through the built-in 
radio (red version). The first step is to designing the monitoring scheme and it is consisting of positioning 
through the most optimal way all the devices inside the building due the macro element to be investigated 
(Figure 2a,b,c) and the number of sensors for each typology (e.g. presence of radio channel). This last 
factor is considered to perform different expeditive approaches for each macro element. The sampling 
frequency adopted to characterize the macro elements and the site was 512 Hz, for a time length about 
16 minutes. In particular, the internal recordings were carried out by positioning the instruments with 
the instrumental axis parallel to the longer dimension of the church. Grilla® software was used to 
process the acquired signal during a 20s window and 1% triangular smoothing, and to apply the FFT. 
 

 
Figure 2. Monitoring scheme with combo Master (blue) and Rover (red) in longitudinal section a), in the 

facade b), on the roof c); TROMINO d) in location C2, T1, F4. 
 

As is shown in the monitoring scheme in Figure 2, the Right Nave has been characterized with n.5 
measurements (T1,T2,T3,T4,T5) not synchronized. However, all the five devices started to recording 
almost simultaneously by manual setting. Otherwise, in the Dome and in the Façade, a synchronized 
set-up of two instruments, named Master (on the Top) and Rover (at the bottom/correspondent level) is 
used to characterize the macro elements. In the first case the instruments with the radio option were 
aligned in the same vertical, and in particular, the Master was located on the Top (C1, blue) and the 
Rover (C2, red) also near the corresponding pillar at the ground level. Lastly, into the Façade, the couple 
Master and Rover was located at five levels (0m, 11m, 19m, 22m, 30m) and ten measurements 
distributed on two vertical alignments, one located in the centre and the second one in the left part, were 
carried out to obtain the modal parameters of the macro element.  

 

5. EXPERIMENTAL RESULTS 
 

The results are divided into two horizontal components, showing the different peaks for each axis, but 
regarding to the Nave, only graphs related to the point T1 and T5 are shown (Figure 3). Four different 

T1  F4 C2 d 
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peaks are identified for each positioning and reported with the relative average values for each 
component in Table 1. In addition, interesting aspects are visible in the spectra of the Lateral Nave: all 
measuring points show one peak related to the N-S component (f1=2,34Hz) and two peaks related to the 
E-W component (f1=3,18 Hz and f2=3,75 Hz). The macro element vibrates at higher frequency along 
the E-W axis because this is parallel to the axis of minor inertia [22]. Furthermore, in the spectra relative 
to the point T5, the nearest to the Dome, there are the same values of the peaks of the Dome (f1= 1,86 
Hz in N-S and f1=1,94 Hz in E-W) because the Nave is affected by the influence of the cupola. In the 
same way, in T1, the nearest to the Façade, the amplitude of the peak in the E-W spectra at f= 4,74 Hz 
is larger than other points, this is probably due to the vibration effect of the façade to the aisle. 

 
Figure 3. SSR analysis of Right Nave in point T1 and T5, and related spectra of N-S and E-W components 
 

Peak Macro Element  fN-S [Hz] fE-W [Hz] 

No.1 Dome 1,93 1,86 
No.2 Nave 2,34 3,18 
No.3 Façade/Dome 4,24 3,75 
No.4 Facade 4,74 4,43 

 
Table 1. Average frequencies of macro-elements in N-S and E-W direction 

 
In the spectra related to the Dome (Figure 4) there are two main vibration modes. The first value is 1,90 
Hz in both directions. The second value is 2,50 Hz, and it is shown clearly in the E-W spectra. However, 
the amplification of the first mode is higher in the N-S axis with respect to the other direction because 
the Dome is constrained to the short arm of the Latin Cross. 
 

 
Figure 4. SSR analysis of Dome in point C1 (top) and C2 (base ground floor) and related spectra 
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Regarding the Façade, we obtained five couple of synchronized measurements (F1 - F5), for each 
alignment. Then, as an example, only results with centred vertical are shown in Figure 5. 

 

 
Figure 5. SSR analysis of Façade with the centred alignment, in N-S (a), E-W (b) 

 
In the Façade, analysing E-W spectra, there are three fundamental frequencies values well-defined: f1 

=2,35 Hz, f2 =3,18 Hz and f3= 4,43 Hz. Otherwise, in the perpendicular direction, the frequencies 
obtained are f1= 2,32 Hz and f2= 3,21 Hz. In both directions, the peak related to f1 confirms the presence 
of the first flexional mode. 
In addition, in Figure 6, through SSR technique, the mode shapes relative to the first flexional mode in 
both directions are clearly defined. Moreover, the displacements relative to pt. 4 and 5 are higher in 
respect to the previous, because from pt. 3 the macro element is not constrained to the Church, in 
particular to the Central Nave. In this regard, three locations could be named “vital” to define an optimal 
configuration and describe the modal features of the element with the less number of sensors as possible; 
i.e. one located at the bottom (TR1), the second one on the top (TR5) and the last in correspondence of 
the linking with the Nave (TR3). The experimental mode shapes are also compared with them obtained 
by SSI technique elaborated with ARTeMIS Modal pro software. 
 

 
Figure 6. Modal Shapes of Facade in N-S a) and E-W b) direction regarding first mode 
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6. DISCUSSION 

During the experimental survey, basically, three different type of set-up were performed: 1) Multiple-
Single station along the Lateral Nave; 2) Single couple (Master and Rover synchronized by radio) into 
the Dome; 3) Multi-Single couple into the Façade.  
The easiest set-up is made using only one device and two recordings, one located in the point of interest 
(T1-T5) and the second one external near the Church (EXT1). The device used is not provided of the 
built-in radio and the synchronization in not allowed. However, with the SSR procedure, it has been 
possible obtain the frequency peaks of the macro-elements, changing the position of the instrument 
along the Lateral Nave, for five different positions. As is notable in both T1 and T5 points, the proximity 
to the Façade (T1) or the Dome (T5) is confirmed by the presence of peaks related with interactive 
effects.  
The Master and Rover combo has been essential to a rapid and correct evaluation of the main modes of 
the Dome. The synchronized recordings show clearly the first flexional mode and, as like the previous 
case, the influence of the transept in term of displacements. However, only one couple is not enough to 
consider the possible presence of torsional modes. In symmetric structures like the present one, torsion 
modes are characterized by having the same spectral amplitude in two measurements at the opposite 
corners but with opposite phase [23]. Unfortunately, the shape of the elements and his collocation inside 
the Church does not allow to positioning the instrument to produce this additional consideration. 
The last set-up provides as many couple of synchronized recordings as many positions at different levels 
are available. The rapid mode shapes obtained shows that the number of points available is enough to 
produce satisfactory results and the matching between the expeditive results and the numerical ones can 
be easily observed. However, more detailed analyses should be made, including the whole masonry 
complex to assess the dynamic behaviour of the other macro elements, since the facade in the reality is 
not isolated.  
It is also noteworthy that the OMA approach used in this work even if it is expeditive, is not lacking in 
precision. SSI and EFDD algorithms were performed to validating the experimental peaks defined with 
SSR technique. The first mode is correctly identified with the other two analyses (Figure 7), and they 
match with the previous one, but using a larger computational borden. 

 

 

Figure 7.  Peak Frequency Identification with SSI and EFDD 

Regarding the possible presence of torsional modes, although the instruments were located along two 
alignments 3 meters apart, this distance is not enough to obtain satisfactory results. Further analyses 
with different tools will be performed to analyse the phase of the signal and the possible existence of 
torsional effects. 

 

 

 

A
m

p
li

tu
d

e 
(S

S
I)

 

A
m

p
li

tu
d

e 
(E

F
D

D
) 

Frequency [Hz]  Frequency [Hz] 

273



 

7. CONCLUSION 
 

The object of this work was to performing an expeditive dynamic characterization in operative 
conditions of a UNESCO world heritage site through AVMs.  
The following results were obtained: 

 the fundamental frequencies of the Dome are: 1,90Hz and 2,50 Hz. Regarding the Nave, the 
values are: 2,34 Hz in longitudinal N-S direction and 3,18 Hz, 3,75 Hz in the transversal E-W 
component; 

 The different set ups show that the synchro option is essential to do not miss the phase of the 
signal and to obtain the correct mode shapes of the element investigated. However, the SSR 
technique allows to identify the frequency peaks even with only one instrument.  

 For a rapid structural identification of the buildings, the information regarding the modal 
parameters provided by two points for each macro element and the external one among eighteen 
(C1,C2, F1,F3, T1,T5, EXT1) are satisfactory. 

 Indeed, if we consider just 30 minutes of recording for each couple of measurements the total 
length of the recordings is less 2 hours, including the instrumental placing. 

 The eigenvalues calculation can be guaranteed by four positioning, (EXT1,C1,T5,F5). It should 
be noted that this is allowed by just one sensor located on the top of the macro element 
investigated, without any synchronization mode and it provides a huge gain in term of time and 
costs. 
 

 
ACKNOWLEDGEMENTS 
 
The authors are grateful to Prof. S. Imposa and Dr.ssa S. Grassi, members of the research group of the 
Applied Geophysics Laboratory of the University of Catania, for having supported them during the 
experimental survey and the post-processing step. In addition, thanks go to the architect Giorgio 
Battaglia, Superintendent of the Cultural Heritage of Ragusa and to Mons. Floridia, parish priest of the 
Cathedral. 
 
REFERENCES 
 
[1] R. Ceravolo, G. de Lucia, E. Lenticchia, e G. Miraglia, «Seismic Structural Health Monitoring of 

Cultural Heritage Structures», in Seismic Structural Health Monitoring, M. P. Limongelli e M. 
Çelebi, A c. di Cham: Springer International Publishing, 2019, pagg. 51–85. doi: 10.1007/978-3-
030-13976-6_3. 

[2] E. Spoldi, I. Ippolito, A. Stella, e S. Russo, «Non‐destructive techniques for structural 
characterization of cultural heritage: A pilot case study», Struct. Control Health Monit., vol. 28, n. 
12, dic. 2021, doi: 10.1002/stc.2820. 

[3] A. Greco, G. Lombardo, B. Pantò, e A. Famà, «Seismic Vulnerability of Historical Masonry 
Aggregate Buildings in Oriental Sicily», Int. J. Archit. Herit., vol. 14, n. 4, pagg. 517–540, apr. 
2020, doi: 10.1080/15583058.2018.1553075. 

[4] S. Imposa, S., Motta, E., Capilleri, P., Imposa, G. HVSR and MASW seismic survey for 
characterizing the local seismic response: A case study in Catania area (Italy) (2016) 1st IMEKO 
TC4 International Workshop on Metrology for Geotechnics, MetroGeotechnics 2016, pp. 97-102. 

[5] S. Grassi, S. Imposa, G. Patti, D. Boso, G. Lombardo, e F. Panzera, «Geophysical surveys for the 
dynamic characterization of a cultural heritage building and its subsoil: The S. Michele Arcangelo 
Church (Acireale, eastern Sicily)», J. Cult. Herit., vol. 36, pagg. 72–84, mar. 2019, doi: 
10.1016/j.culher.2018.09.015. 

[6] R. Salvatore e S. Eleonora, «Damage assessment of Nepal heritage through ambient vibration 
analysis and visual inspection», Struct. Control Health Monit., vol. 27, n. 5, mag. 2020, doi: 
10.1002/stc.2493. 

274



 

[7] E. Reynders, «System Identification Methods for (Operational) Modal Analysis: Review and 
Comparison», Arch. Comput. Methods Eng., vol. 19, n. 1, pagg. 51–124, mar. 2012, doi: 
10.1007/s11831-012-9069-x. 

[8] S. Russo, «Using Experimental Dynamic Modal Analysis in Assessing Structural Integrity in 
Historic Buildings», Open Constr. Build. Technol. J., vol. 8, n. 1, pagg. 357–368, dic. 2014, doi: 
10.2174/1874836801408010357. 

[9] R. Brincker, P. Andersen, e N.-J. Jacobsen, «Automated Frequency Domain Decomposition for 
Operational Modal Analysis», pag. 7. 

[10] R. Brincker, «Understanding Stochastic Subspace Identification», pag. 7. 
[11] S. Castellaro, L. A. Padrón, e F. Mulargia, «The different response of apparently identical 

structures: a far-field lesson from the Mirandola 20th May 2012 earthquake», Bull. Earthq. Eng., 
vol. 12, n. 5, pagg. 2481–2493, ott. 2014, doi: 10.1007/s10518-013-9505-9. 

[12] A.K. Chopra, Dynamic of Structures, Theory and Applications to Earthquake engineering, 
Prentice Hall: 3rd ed 2007. 

[13] G. Dal Moro, «On the Identification of Industrial Components in the Horizontal-to-Vertical 
Spectral Ratio (HVSR) from Microtremors», Pure Appl. Geophys., vol. 177, n. 8, pagg. 3831–
3849, ago. 2020, doi: 10.1007/s00024-020-02424-0. 

[14] S. Imposa, G. Lombardo, F. Panzera, e S. Grassi, «Ambient Vibrations Measurements and 1D Site 
Response Modelling as a Tool for Soil and Building Properties Investigation», Geosciences, vol. 
8, n. 3, pag. 87, mar. 2018, doi: 10.3390/geosciences8030087. 

[15] Nakamura Y., 1989. A method for dynamic characteristics estimation of subsurface using 
microtremor on the ground surface. Quaterly Report Railway Tech. Res. Inst., 30-1, 25- 30.. 

[16] Nogoshi M. and T. Igarashi, 1971. On the amplitude characteristics of microtremor (part 2) (in 
japanese with english abstract). Jour. Seism. Soc. Japan, 24, 26-40. 

[17] S. Bonnefoy-Claudet, F. Cotton, e P.-Y. Bard, «The nature of noise wavefield and its applications 
for site effects studies», Earth-Sci. Rev., vol. 79, n. 3–4, pagg. 205–227, dic. 2006, doi: 
10.1016/j.earscirev.2006.07.004. 

[18] E. Spoldi e S. Russo, «Damage Assessment and Dynamic Characteristics of Temples in Nepal 
Post Gorkha 2015 Earthquake», Int. J. Archit. Herit., vol. 15, n. 3, pagg. 479–493, mar. 2021, doi: 
10.1080/15583058.2019.1628322. 

[19] S. Castellaro, «Dynamic characterization of the Eiffel tower», Eng. Struct., pag. 13, 2016. 
[20] S. Russo, E. Spoldi, I. Ippolito, G. Imposa, e A. Bretini, «Detection of 2009 L’Aquila’s 

Earthquake Effects on Collemaggio Church through Experimental Surveys», J. Archit. Eng., vol. 
28, n. 1, pag. 05021017, mar. 2022, doi: 10.1061/(ASCE)AE.1943-5568.0000495. 

[21] SESAME European project, 2004. J-SESAME User Manual, Version 1.08. 
[22] S. Russo, D. Liberatore, e L. Sorrentino, «Combined ND Techniques for Structural Assessment: 

The Case of Historic Nepali Constructions after the 2015 Gorkha Earthquake», in The 18th 
International Conference on Experimental Mechanics, mag. 2018, pag. 421. doi: 
10.3390/ICEM18-05271. 

[23] S. Castellaro e S. Russo, «Dynamic characterization of an all-FRP pultruded construction», 
Compos. Struct., vol. 218, pagg. 1–14, giu. 2019, doi: 10.1016/j.compstruct.2019.03.032. 

 

275



 
 

IDENTIFICATION OF CHANGES IN THE DYNAMICS 

OF A REINFORCED CONCRETE BUILDING 

THROUGH A MACHINE LEARNING APPROACH FOR 

DATA NORMALIZATION 

Davide Arezzo 1, Simone Quarchioni 2, Vanni Nicoletti 3, Sandro Carbonari 4, Fabrizio Gara 5 

1 Postdoc Researcher, Università Politecnica delle Marche, d.arezzo@pm.univpm.it. 
2 Scolarship Researcher, Università Politecnica delle Marche, simone96.quarchioni@hotmail.it. 
2 Postdoc Researcher, Università Politecnica delle Marche, v.nicoletti@staff.univpm.it. 
3 Associate Professor, Università Politecnica delle Marche, s.carbonari@staff.univpm.it. 
4 Full Professor, Università Politecnica delle Marche, f.gara@staff.univpm.it. 

ABSTRACT 

In recent years there has been a growing number of Structural Health Monitoring (SHM) applications 

based on environmental vibration measurements and Operational Modal Analysis techniques. It is 

nowadays widely recognised in the scientific literature the need of normalizing data (e.g. modal 

properties) of vibration-based monitoring systems from variations related to the effects of 

environmental conditions (e.g. temperature, wind speed, intensity of human activities). 

In this paper, the results of the dynamic monitoring of a 10-storey reinforced concrete building in central 

Italy are presented. The building, which is monitored since 2017, hosts the Faculty of Engineering of 

the Università Politecnica delle Marche and can be considered of strategic importance. During 2021, 

retrofit works on the structural joints separating the building from adjacent bodies were carried out. 

This led to a slight modification of its dynamic behaviour; in detail, variations of the modal properties 

due to the interventions on joints hide beyond those due to environmental conditions and cannot be 

clearly detected with traditional multivariate statistics techniques for data cleansing. On the contrary, a 

data cleansing procedure based on the application of an artificial neural network revealed effective to 

detect the variation of the building dynamic behaviour. 

Keywords: structural health monitoring, operational modal analysis, dynamic identification, 

environmental conditions, artificial neural networks. 
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1. INTRODUCTION 

Vibration Based Structural Health Monitoring (VB-SHM) systems may not be effective when modal 

properties vary significantly with environmental parameters, especially under severe temperature 

changes [1]. Some studies have found that changes in structural vibration properties produced by 

temperature variations could be more significant than those caused by a medium degree of structural 

damage or under normal operational loads [2]. Thus, a lack of understanding of temperature effects can 

lead to an erroneous identification of the structural health.  

To date, many experimental and field studies have observed the importance of temperature variations 

on modal parameters and different conclusions have been drawn depending on the structural typology. 

With reference to bridges, experimental tests on the Z24 bridge are certainly among the most impactful 

in this topic; interesting results in this sense can be found in the work of Peeters et al. [3]. For buildings, 

it is more difficult to find monitoring report in which dependencies between dynamic properties and 

temperature have been observed. One of the first works addressing the effects of environmental 

conditions on buildings is the study by Clinton et al [4], where monitoring results of the Millikan Library 

building of the Caltech Campus, are presented. Also, it is worth mentioning the work by Mikael et al. 

[5], who analysed the wandering of long-term frequency and damping values of three reinforced 

concrete buildings. In their work, the authors observed an interesting behaviour of the buildings for 

temperature values below the freezing temperature; while in general the correlation of frequencies with 

temperature seems to be positive, when the temperature drops below zero the trend reverses and the 

buildings become stiffer (as observed for the Z24 bridge [3]). Regarding the effects of temperature on 

the modal parameters of buildings, other interesting results can be found in Regni et al. [6]. 

Numerous studies have also been conducted on historical masonry buildings. Saisi et al. [7] present the 

main results of a recent post-earthquake evaluation of a masonry tower in Mantua (Italy) observing that 

the natural frequency of global modes tends to increase with the temperature increment. This behaviour 

has also been observed in other long-term studies of masonry towers [8, 9] and, in the work of Saisi et 

al. [7], it has been explained through the closure of surface cracks, minor masonry discontinuities or 

mortar voids induced by the thermal expansion of the materials. Thus, the temporary ''compaction'' of 

the materials induces a temporary increase in stiffness and thus in modal frequencies [7].  

When measurements of the environmental parameters influencing the modal parameter estimates are 

not available, statistical methods must be adopted to eliminate the effects of environmental and 

operational factors. Such as an example, Rainieri et al. [10] explored the potential of Blind Source 

Separation Techniques (BSS) methods.  

It should be noted that the period relative to the changes in environmental conditions are higher than 

the lowest fundamental period of the monitored structure. When monitored for a short period of time 

(seconds, minutes), the hypothesis of considering the structure as a time-invariant dynamic system is 

realistic. As the observation period increases (hours, days, months, years) changes of modal parameters 

often become non-linear, as they are due to non-linear temperature-stiffness relationships of the 

structural materials or in the boundary conditions of the structure [11]. For this reason, simple linear 

regression models are often not sufficient. To overcome this problem Reynders et al. [11] propose the 

application of the kernel PCA technique. Recently, researchers facing this problem have increasingly 

relied on machine learning techniques [12]. 

In this paper, the monitoring results of the Engineering Tower of the Università Politecnica delle 

Marche in Ancona are reported. The Tower has been monitored since 2017 and, although with some 

interruptions, the monitoring period allows the identification of a marked dependence of its vibration 

frequencies on environmental parameters, especially temperature and wind. These effects have been 

normalized through the implementation of an artificial neural network. Section 2 describes the case 

study and the monitoring system. Finally, in Section 3, the normalisation procedure and the results 

obtained are presented. 
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2. PRESENTATION OF THE CASE STUDY 

The Tower at hand is located in Ancona (Central Italy), in the campus of the Faculty of Engineering of 

the Università Politecnica delle Marche. The building was designed and constructed between 1980 and 

1983 according to standards that accounts for seismic actions. The structure, having a square floor plan, 

is composed by reinforced concrete (r.c.) frames with 3 columns 9 m spaced in the main building 

orthogonal directions. Detailed information about the building can be found in the work of Regni et al. 

[6] and Arezzo et al. [13], while in Figure 1 some pictures of the building are shown. 

2.1. Preliminary identification tests 

Over the years, several complete dynamic identifications of the Tower have been carried out to calibrate 

a Finite Element Model (FEM) and to control the evolution of the frequencies and mode shapes over 

time. These dynamic identifications allowed to deepen investigate the interaction between the main 

body and the staircase-elevator body. In this work, results of tests carried out in September 2020 are 

reported. Ambient vibration tests were performed with the aim of identifying the dynamic behaviour of 

the Tower, expressed in terms of modal parameters, i.e. eigenfrequencies, damping ratios and modal 

shapes. The tests consisted in placing six accelerometers per floor, three in the stairwell and three in the 

Tower, starting from level 155 to the roof at elevation 200 (i.e., 10 monitored storeys). The sensors 

layout is reported in Figure 2. The identification was carried out through the SSI-PC algorithm and 

Figure 3 shows the identification results in terms of frequencies, damping ratios and modal shapes of 

the first three modes. 

 

(a) (b) 
 

Figure 1. View of the tower: b) South c) and North-West views. 
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Figure 2. Layout of the sensors adopted for the ambient vibration tests.  
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1° mode: 
f = 1.06 Hz 
x = 1.65 % 

MCF = 1.32 % 
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f = 1.20 Hz 
x = 1.37 % 

MCF = 3.58 % 

3° mode: 
f = 1.46 Hz 
x = 1.70 % 

MCF = 2.89 % 

 

Figure 3. Dynamic identification results in terms of modal parameters of the first three vibration modes. 

2.2. Description of the monitoring system 

In 2017 a continuous monitoring system was installed on the Tower to monitor the evolution of its 

modal parameters and to measure its structural response to possible earthquakes. Initially, the 

monitoring system relied on the measurements of three accelerometers placed on the top floor (points 

A and B in Figure 2). In June 2018, the monitoring system was integrated with a Davis Vantage pro2 

wireless weather station used to collect recordings on environmental parameters, mainly indoor and 

outdoor temperature, and wind, in order to more accurately control the variation of modal parameters 

of the structure with environmental changes. Since April 2021, the monitoring system has been 

extended with three additional accelerometers placed on the top floor of the stairwell in order to monitor 

the interaction of the two buildings. In addition, two thermocouples were installed to measure the 

temperature of the aluminium window frames, and a triaxial velocimeter was positioned at the 

foundation level for measuring the seismic input. Figure 4 shows a layout of the actual monitoring 

system, while Figure 5 shows the overall monitoring results obtained since 2017. Data relevant to 2020 

are missing because of the difficulty due to the lock-down caused by Covid-19 pandemic. 
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Figure 4. Actual layout of the monitoring system. 
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Figure 5. Global monitoring results from 2017 to date. 

3. DATA NORMALIZATION THROUGH A MACHINE LEARNING APPROACH 

3.1. Nonlinear autoregressive neural network with external input (NARX) 

Traditional multivariate statistical analysis techniques cannot always efficiently normalize the data due 

to the non-linearity of the phenomena governing the dependency of the structural response with ambient 

parameters. More advanced numerical techniques, such as machine learning, may therefore be 

necessary. In particular, this work explores the capability of artificial neural networks to carry out this 

task.  

A technical neural network is made up of simple processing units, the neurons, and of direct weighted 

connections between these neurons. An interesting introduction to the method can be found in the work 

of Markova [14]. Usually, neural networks have multiple connected layers. A layer whose output is the 

network output is called an output layer. The other layers are called hidden layers. The tasks of selecting 

the number of hidden layers, the number of neurons in the hidden layers and the number of output 

neurons, as well as the transfer functions, are not trivial. Hidden layers give the network its ability to 

generalize. As the number of hidden layers increases, it also increases computation time and the danger 

of overfitting, which in turn leads to bad out-of-sample prediction performance. In the case of neural 

networks, the number of weights, which is related to the number of hidden layers and neurons, and the 

dimension of the training set determine the probability of overfitting [15]. According to Baily and 

Thompson [16], for a three-layer network with n input neurons and m output neurons, the hidden layer 

would have √𝑛 ∙ 𝑚 neurons. Other criteria are mentioned in the review available in the work by 

Markova [14]. Most actual neural network models use the sigmoid transfer function, but it is possible 

to find other proposals, such as the hyperbolic tangent, the arctangent and linear transfer functions [14, 

17]. 
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Neural networks can be divided into dynamic and static categories. In dynamic networks, the output 

not only depends on the current input to the network, but also on the current or previous inputs, outputs, 

or states of the network. The non-linear autoregressive network with exogenous inputs [18] is a 

recurrent dynamic network with feedback connections enclosing different layers of the network. The 

NARX model is popularly used in time series modelling. The equation that defines the NARX model 

is: 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), … 𝑢(𝑡 − 𝑛𝑎)) (1) 

wherein the next value of the dependent output signal y(t) is regressed on the past values of the output 

signal and the past values of an independent (exogenous) input signal. The output of the NARX network 

could be an estimate of the output of some non-linear dynamical system that is intended to be modelled. 

There is a toolbox function in MATLAB that facilitates the preparation of data for dynamic (time series) 

networks. The general practice in training multilayer networks is to first divide the data into three 

subsets. The first subset is the training set, which is used to compute the gradient and update the weights 

and biases of the network. The second subset is the validation set. The error on the validation set is 

monitored during the training process. The input vectors and destination vectors are randomly split into 

three groups as follows: 

• 70% used for training; 

• 15% used to assess that the network is generalizing and to stop training before overfitting; 

• 15% used as a completely independent test of network generalization. 

When the weights and biases of the network are initialized, the network is ready for training. The 

training process of a neural network implies adjusting the values of the weights and biases of the 

network to optimize the performance of the network. The default performance function for feedforward 

networks is the mean square error (mse) between network outputs and target outputs. 

𝐹 = 𝑚𝑠𝑒 =  
1

𝑁
∑(𝑒𝑖)2

𝑁

𝑖=1

=
1

𝑁
∑(𝑡𝑖 − 𝑎𝑖)2

𝑁

𝑖=1

 (2) 

In order to train multilayer feedforward networks, any of the standard numerical optimization 

algorithms [18] can be employed to optimize the performance function;. One of the most widely used, 

thanks to its excellent performance for training neural network, is the Bayesian Regularization (BR) 

algorithm [18] which has been used in this work. It is a network training algorithm that updates the 

weight and bias values according to Levenberg-Marquardt optimization. It works by minimizing a 

combination of square errors and weights and then determines the correct combination to produce a 

network that generalizes well. This algorithm typically takes more time, but can result in good 

generalization for difficult, or noisy datasets. Figure 6 shows the adopted neural network implemented 

with the aid of machine learning toolbox provided by MATLAB. Output y(t) contain the time history 

of eigenfrequencies relative to the first three modes of vibration while, predictor x(t), contains the 

relative environmental parameters, i.e., external temperature, internal temperature, wind velocity and 

the root mean square of the acceleration measurements. 

  

Figure 6. Neural network adopted for the data normalization. 
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3.2. Results of normalization procedure 

The neural network has been trained on data recorded from July 2018 to January 2019 since indoor 

temperature measurements were not available in the previous period. Figure 7 shows the normalized 

dataset overlaid on the original dataset. It is useful to introduce the Gaussian Mixture Model (GMM), 

which allows to synthesize the information related to the three monitored frequencies by defining a 

statistical model composed of three averages, one for each variable, and a 3 x 3 covariance matrix Σ, 

where the element (i,j) is the variance between variable i and variable j, capable of representing the 

variation of the first three frequencies. Analyzing the training period, it is worth to note that the 

components of the covariance matrix of the GMM relative to the normalized dataset (Figure 8), are 

much smaller than those of the raw dataset. 

Looking at the normalized dataset, it can be seen an increase in data dispersion starting from March 

2021 revealing that the neural network predicts results of the monitoring system with increasing 

uncertainty. This could indicate a change in the dynamic behavior of the Tower. A possible reason for 

this change could be the retrofit work carried out on the structural joints, which started exactly in March 

2021. Figure 9 shows some photos of the work done on all the structural joints separating the tower 

from the adjacent buildings. A slight variation in dynamics may be due to a different interaction between 

the Tower and the adjacent buildings, especially with the stairwell-elevator body since, as can be seen 

from Figure 9, joints were completely filled with debris. Because of this high dispersion, it could be 

necessary to train again the neural network in order to normalize the data with respect to this new 

dynamic behavior (different boundary conditions caused by the interactions between the Tower and the 

adjacent buildings). 
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Figure 7. Original dataset superimposed on data predicted by statistical model via NARX. 
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Figure 8. Gaussian Mixture Model of the original dataset and the normalized data via NARX. 

 

(b) (c) 
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Figure 9. Some photos of the retrofit works carried out on the tower structural joints. 

4. CONCLUSIONS 

Structural properties used in damage detection techniques because of their sensitivity to damage are 

usually also sensitive to changes in the environmental and operational conditions of structures. As 

evident from a literature review, the influence of temperature on the vibration frequencies of a structure 

was extensively studied in recent years and it is now well known that temperature can have important 

effects on the modal parameters of structures. In some cases, the frequency variations induced by 

temperature changes may be greater than those caused by damage. Furthermore, especially in the case 

of buildings, understanding the interaction between structural and non-structural elements may require 

a very advanced level of engineering analysis that can lead to unsustainable timing and economic 

resources. In this context, the use of machine learning techniques may be very useful to correctly 

remove the effects of temperature and promptly and effectively assess changes in structural dynamics. 
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In this work it was decided to implement an artificial neural network for the normalization of monitoring 

data from a real structure. In detail, the effectiveness of this approach has been demonstrated by 

analyzing data from the monitoring of a 10-storeys r.c. building; the adopted methodology permitted to 

detect changes in eigenfrequencies induced by minor retrofit works carried out on the building structural 

joints. For the case at hand, the retrofit works contributed to increasing its structural performance and 

the slight variation in the structural dynamics is not cause of concern. However, it is important to note 

that, if there had been a variation of the same magnitude due to the occurrence of structural damage or 

material degradation, without an effective data normalization strategy, the variation could not have been 

detected by the VB-SHM system. 
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ABSTRACT 

Robust elimination of the environmental and operational variability from monitored vibration properties 

is essential for accurate vibration-based damage detection in civil engineering structures. This study 

uses the two-story wooden frame model of a shear building placed in real ambient conditions to extract 

natural frequencies of the structure by means of automated operational modal analysis. Further, input-

output and output-only environmental models based on multiple linear regression and principal 

component analysis are developed to remove environmental influences from the identified frequency 

time series. This study aims to assess the robustness and performance of those methods in detecting 

damage and structural changes in civil structures exposed to highly variable environmental and 

operational conditions. The initial results show the superiority of the principal component analysis for 

modelling environmental effects and damage detection under challenging environments. 

Keywords: Vibration-based monitoring, Operational and environmental factors, Damage detection 

1. INTRODUCTION 

The community of specialists in Structural Health Monitoring (SHM) still seeks an optimal and robust 

solution to remove variable operational and environmental factors (EOV) on modal parameter estimates 

[1]. It is well known that these factors can mask changes in modal parameters when they are used as 

damage indicators in a vibration-based SHM campaign and, therefore, mislead the condition assessment 

of the monitored structure. This is especially relevant for the civil engineering structures like buildings 

and bridges, which are generally exposed to varying environmental conditions.  

Various environmental and operational factors influence the variability of the frequencies. Among 

those, the temperature is usually the dominant cause, as verified, for instance, in [2]. Different input-

output [3] and output-only [4] environmental models are proposed and tested already on large-scale 
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structures [5]. Nevertheless, most studies on frequency variability are performed in temperatures 

predominantly above and slightly below 0o C. 

This paper continues the study on the performance of the Multiple Linear Regression models (MLR) 

and the Principal Component Analysis (PCA) in damage detection, which was previously investigated 

using the experimental specimen - a wooden pole placed in ambient conditions [6]. This study aims to 

assess the sensitivity of these methods in terms of modelling the varying ambient and operational 

conditions and detecting damages – which were deliberately added as simulated frequency variation. 

This was conducted with a 2-storey timber frame that has been chosen as the object of the study. 

Although the monitoring campaign is planned to be carried out over a complete seasonal cycle (1 year), 

the initial results show the superiority of the PCA model over the MLR model in modelling 

environmental effects and damage detection under challenging environments.  

The experimental model is located on the outskirts of the capital of Latvia, Riga. Its location and 

dimensions were chosen to approximate the study object to real conditions and modal parameters typical 

for medium-height buildings while allowing the addition of damages with increasing severity levels in 

a controlled manner. Experimental data is gathered during the autumn and winter of the temperate 

climate zone 4.5km from the Baltic seacoast, ensuring a challenging environment, including 

temperatures well below 0o C. 

2. METHODOLOGY 

2.1. Frequency identification, quality assessment of measurements and damage simulation 

For frequency identification is used a robustified version of the Eigensystem Realization Algorithm 

(ERA), which is adapted for Operational Modal Analysis (OMA) purposes [7]. This algorithm is a time-

domain approach and is included in the Matlab OMA toolbox developed by R. Brincker [8] that was 

used for this study.  

Since the test model has a finite number of degrees of freedom and the approximate natural frequencies 

of the vibrations are known in advance (two sets of three rather closely spaced modes), the singular 

values in the reduced SVD matrix are adjusted accordingly.  

The chosen strategy is to use all the measurements regarding its quality for identification purposes. 

Nevertheless, only those time series where all of the six modes were identified successfully were used 

for further analysis and included in the building of environmental models. It constitutes 77% of the total 

possible continuous data, including technical interruption periods (see section 3 for more information).  

The model is planned to monitor for a full year before structural modifications are introduced in order 

to assess the effectiveness of damage detection models. Therefore, in initial investigations, time-

dependent damage processes are simulated as additional changes in the first lateral bending mode and 

first torsional mode frequency. Damage approximately simulates the degradation effect in a lateral 

direction of one of the frame haunch elements. Then changes in the frequency are expected in the lateral 

direction and torsional one. The longitudinal frequency will not be considerably affected. 

2.2. Environmental models 

In this study, two environmental models were built using the data for the six identified frequencies of 

the wooden specimen. i) Multiple linear regression model, and ii) Principal component analysis.   

Frequency data are split in the proportion of 70/30 between the training and test set. Therefore, the 

model is built on data from 10.11.2021 - 06.02.2022. This is a winter period with highly variable 

climatic conditions comprising sharp temperature fluctuations, small temperature fluctuations in some 

periods, both positive and negative temperatures, snow and rain precipitation, as well as dry periods 

and wind gusts up to 20 m/s and windless periods. 
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2.2.1. MLR model 

Multiple linear regression is used to explain the relationship between dependent variables, in this case, 

frequencies, and several independent variables, e.g. ambient metrological variables, that do not have 

too high a mutual correlation. In practice, Pearson’s correlation coefficient should be less than 0.6 [9] 

between independent variables. MLR model is an input-output model that considers only one frequency 

at a time, and it is defined as:  

𝒀𝒏 = 𝑿𝒏𝜷𝒏 + 𝜺𝒏 (1) 

𝒀𝒏 = [

𝑦1

𝑦2

⋮
𝑦𝑚

], 𝑿𝒏 = [

1 𝑥11 ⋯ 𝑥1𝑘

1 𝑥21 ⋯ 𝑥2𝑘

⋮ ⋮ ⋮ ⋮
1 𝑥𝑚1 ⋯ 𝑥𝑚𝑘

] , 𝜷𝒏 = [

𝛽0

𝛽1

⋮
𝛽𝑘

], 𝜺𝒏 = [

𝜀1

𝜀2

⋮
𝜀𝑚

].  

where Y denotes the time series vector of a dependent variable (frequencies), n the number of the 

vibration modes under consideration, m the total number of measurements, X the matrix of 

meteorological variables (time series as column vectors), 𝜷 the regression coefficient vector, 𝜺 – 

residuals vector and k the number of independent predictors. 

2.2.2. PCA model 

PCA method converts a set of correlated variables into a set of uncorrelated variables through an 

orthogonal transformation [10]. In this study, each of the frequency-time series f1 to f6 is mean-centred, 

then calculated covariance matrix and performed its eigendecomposition on the frequency training set. 

Obtained eigenvalues and eigenvectors are often known as variances, and component loadings or PC 

components allow the original time series to be reconstructed using the full set of data. PCA produces 

the same number of principal components (PC) as there are features - time series in the training dataset. 

Reconstruction can be done utilizing a different number of principal components. The variance of the 

residuals between identified data and PCA fitted data considerably changes if structural damage occurs 

at some point in the test data. This approach was successfully applied to wooden pole short period 

testing [6]. 

In this study error between fitted and actual data is given as Root Mean Squared Error (RMSE) time 

series across all the frequencies for a relevant number of PC components used: 

𝐸𝑅𝑀𝑆
𝑚 = √

∑ (𝒇𝑖 −  𝒇�̂�)2𝑁
𝑖=1

𝑁
 (2) 

where m is the number of PC components considered, N is the number of frequency time series, 𝒇𝑖 

denotes identified frequency time series and 𝒇�̂� designates fitted time series using PCA model.  

3. MONITORING CAMPAIGN AND TEST SET-UP 

The monitoring campaign was initiated in late autumn on 10.11.2021. It is planned to perform 

continuous monitoring for at least one year. The initial assessment is done for the time period of  

10.11.2021. to 16.03.2022 covers the specimen’s dynamic response to ambient conditions through the 

whole winter and the beginning of the spring.  

The monitored structure is a two-storey shear frame building model with a plan dimension of 705 mm 

x 584 mm and an overall height of 1.2m placed in natural ambient environmental conditions (see Figure 
1). The primary materials used for the model are 15 mm x 15 mm timber slats for the columns and 

haunches and 4 mm thick fibreboard for slab imitation. Materials and structure are chosen in a way that 

expected fundamental frequencies coincide with the typical frequencies of medium-rise buildings. 

Typical frequencies are summarized in the [11]. Therefore, it is ensured not only real environmental 

conditions for the experiment like temperature or humidity but also the characteristic response to 
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vibration sources like traffic and wind. The model is placed 10 m from the village’s access road. A 

detachable roof shields it in the winter season, ensuring that no extra mass due to snow is added to the 

frame slabs. However, the roof did not prevent snow concentration on the slabs after heavy snowfalls. 

The added snow was removed as soon as possible. This action is illustrated in Figure 1. 

The sensors used for the measurements are six Dytran IEPE piezoelectric accelerometers with a built-

in Faraday shield for electrostatic noise immunity. The sensors are hermetically sealed (model DY 

3191A1) with a sensitivity of 10V/g. Operation range -51oC to 121oC. Dynamic signal analyzer 

DT9857E with an output range of ±10 V to the sensors is connected by 15m  polyurethane, 2-pin(F) 

signal cables. Sensors are placed at the corners of the three joints in two horizontal directions. As each 

sensor’s weight is approximately 800g, a balancing mass of 1.6kg was attached to the specimen corners 

without sensors to confer more stability to the structural system.  

 

  
  

Figure 1. Left: Scheme of the model. Middle: Photo of the experimental model after snowfall with winds. 

Right: Photo of the experimental model after extra snow load is removed 

 

Measurements are performed continuously with a sampling frequency of fs = 400Hz. A few short-term 

interruptions of measurements have occurred during the monitoring campaign so far. It was mainly due 

to the failures of the system’s robustness, e.g. software error or power shortage. Meteorological data 

(hourly mean), e.g. temperature, snow layer thickness on the ground, precipitation in mm and wind 

direction in degrees, are obtained from a nearby meteorological station. The test specimen is generally 

sheltered from the wind in a direction range of approximately 315 to 10 degrees. 

The recorded accelerations were divided into time series containing 30min of vibration response data. 

These time series were subsequently detrended, bandpass filtered, and then passed as primary data to 

the  ERA algorithm to identify the first 6 vibration modes of the wooden frame specimen. Identification 

is carried out in two steps. First, the band passed the first three closely spaced modes, performed 

identification and then repeated filtering and identification for the second set of closely spaced modes. 

4. RESULTS 

4.1. Environmental conditions and identified frequencies 

During the observation period from November to March, air temperature fluctuated from the -20.8 Co 

to the +9.72 Co. Different temperature fluctuation regimes were observed: 1) mainly positive 
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temperatures, 2) mainly negative temperatures, 3) temperatures close to 0 degrees, and 4) abrupt 

changes between positive temperatures during the day and negative temperatures at night. Prolonged 

periods of snow precipitation were observed three times throughout the monitoring campaign. Together 

with successfully identified six frequencies, the temperature time series are illustrated in Figure 2.  

As expected from the assessment prior to this experiment, two sets of the closely spaced frequencies 

were identified: lateral f1, longitudinal f2 and torsional f3 frequencies for the first bending and torsional 

mode, as well as lateral f4, longitudinal f5 and torsional f6 frequencies for the second bending and 

torsional mode, respectively. 

 

 

 

 

Figure 2. Time evolution of the identified frequencies every 30min and half-hourly mean temperature data.  

 

The visually identifiable outliers in frequencies time series are explained by a change of the modal mass 

due to the snow on the platforms. When the platform was cleaned from snow, the frequencies returned 

to the normal regime. These outliers are left in the data for further analysis to evaluate different 

environmental model effectivity when noisy data are passed to the model creation.  

In order to analyze the dependence between ambient condition variation and identified frequencies as 

well as to examine the possible multicollinearity of independent variables for MLR model, Pearson’s 

correlation coefficients are computed. This measures the linear correlation between two variables [10]. 

Results are presented in Table 1. Data split between temperatures <-2 Co/ -2 ≤ 0 ≤2 Co/ >2 Co are 

respectively 23.1/ 45.3% / 31.69% of total data.  

 

Table 1. Pearson’s correlation coefficients between ambient variables and frequencies 

Mode/ 

Ambient 

variable 

Temperature 

Humidity  

Snow 

thickness on 

the ground 

Precipitation 
Wind 

direction <-2 Co 
-2 ≤ 0 ≤2 

Co 
>2 Co 

f1 -0.23 -0.39 +0.01 +0.13 +0.33 +0.01 +0.18 

f2 -0.37 -0.42 -0.01 +0.15 +0.45 +0.01 -0.23 

f3 -0.42 -0.41 -0.02 +0.17 +0.52 +0.02 -0.25 

f4 -0.06 -0.31 +0.16 +0.32 +0.08 -0.02 -0.10 

f5 -0.23 -0.36 +0.04 +0.27 +0.22 -0.02 -0.15 

f6 -0.32 -0.30 -0.02 +0.32 +0.39 +0.03 -0.17 

 

290



Table 1 reveals complex relationships between frequencies and ambient variables and shows different 

dynamic responses at positive, negative and around 0 temperatures for different frequencies. This 

indicates the potential difficulties in successful modelling of frequencies with the MLR model only by 

considering ambient variables as independent variables. Examination of frequency distribution 

histograms also indicated at least two different behaviours under the ambient temperature changes. 

Especially it is prominent in the first bending and torsional modes.  

Frequencies time series amongst themselves are highly correlated. Normalized linear correlations 

between identified frequencies were found to be in ranges from +0.69 (for f3 and f4) to the +0.96 

(between f1 and f2; f2 and f3; f1 and f3). 

4.1.1. MLR model results 

The correlations summarized in Table 1 do not show pronounced multicollinearity of any ambient 

parameters. Therefore, for MLR model creation, the independent variables used are temperature, 

humidity, snow thickness on the ground, and wind direction. Precipitation data does not have any linear 

correlation with frequencies; therefore, it is left out. Due to the signs of frequency nonlinear behaviour 

under the ambient temperature, as expected, MLR model just using those parameters is not suitable as 

an environmental model for this case. 

The removal or damage in one of the frame haunch elements mainly reduces global stiffness in one 

direction, and the perpendicular vibration mode will not be significantly affected, as verified by finite 

element calculations. Therefore, the solution proposed is to add one more predictor, namely, the 

frequency of perpendicular direction compared to the mode under consideration. This potentially allows 

for identifying damage from the growth of the amplitudes of errors between predicted and actual 

frequency data (Figure 3). The damage of the frame haunch is simulated as an addition of a non-periodic 

function to the first mode frequency f1 time-series after the measurement point 4200. This damage was 

in the form of a coefficient multiplied by the cube-root of time as well as added normally distributed 

noise. Simulated change due to damage amounts to a maximum of 3% of the f1 mean value. For the 

following sets: training, test and after the damage occurred set, is calculated the percentage of the 

outliers I0. The threshold is set as three standard deviations of residual square error between true and 

fitted data in the test set between measurement points 3251 and 4200.  

 

 

Figure 3. Frequency and residual square error between true data and MLR model fitted data 

 

4.1.2. PCA model results 

As a purely data-driven method, PCA does not require collecting ambient condition data such as 
temperature or humidity. When using this technique, it is assumed that the obtained time series that 

have maximal variances by the orthogonal transformation of the covariance matrix of frequency data 

are the principal components (PC). These components are mutually orthogonal. All six PC components 

explain 100% of the data, including the noise in the data and outliers due to the snow on the specimen 

platforms. In this case, the first component already explains 82.7% of the data variability, but the three 

components explain 97.9%.     
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Usually, overfitting by using all the PC’s can be seen as a negative effect on time series analysis. 

Overfitted model does not perform well when new frequency changes in data after some measurement 

point occurs, like a new gradual function, step function or different character of noise on one or several 

frequencies. Nevertheless, if only some of the PC’s are used, this change is an indication of possible 

structural damage and, therefore, damage sensitive feature. Figure 4 presents RMSE of the error 

between measured and PCA estimates across all six frequencies considering a different number of PC 

components. Threshold lines in plots are set as a value of RMSE three standard deviations in the test 

set. For each of the cases and data sets percentage of the outliers, I0 is given in the plots. In this particular 

case overfitted model works perfectly also on the test set between measurement points 3251 and 4200. 

However, also five PC components show 100% outliers in the damage simulated region. 

  

  

  

 

Figure 4. RMS error across all six frequencies between true data and PCA model fitted 

 

Despite the fact that the frequency data has been noisy and not evenly sampled and applied small 

amplitude of frequency variation due to damage, PCA model using all six PC components perfectly 

discovered the start of the damage simulation point. Also, considering five or even four PC components, 

damage can be clearly identified, and outliers due to the platform’s mass change can be recognized. Yet 

more, the use of only the first PC component gives a better outlier index I0 than MLR approach.   

5. CONCLUSIONS 

This experimental study reveals the initial results of the planned long term SHM campaign by 

monitoring a two-storey shear frame wooden specimen that undergoes challenging environmental 

conditions, including different temperatures regimes i) sharp daily temperature fluctuations from 

positive to negative temperature ii) gradual daily temperature fluctuations in both negative and positive 

regions and iii) temperature fluctuations close to zero degrees.  

Two methods, namely, MLR and PCA are chosen to model environmental and operational effects in 

this study because of their low level of man-made decision input. 

The different temperature regimes are found to have an effect on the frequency-temperature 

relationship. The negative temperatures promote signs of non-linearities that could be related to 

different physical processes due to freezing and thawing, as well as snow precipitation.  

For this reason, MLR does not perform as good as PCA for modelling the environmental effects. PCA 

relies on the relation between modes, and it is noticed that due to environmental condition changes, 
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frequencies have high positive correlations between them. Despite the operational condition changes - 

mass on the platform due to short term snow load, simulation of the structural changes is shown as a 

distinguishable outlier in the PCA model. Nevertheless, PCA does not give information on which 

exactly frequencies damaged occurred as opposite to MLR approach. 

Environmental and frequency data gathering of the specimen continues, and more refined investigations 

are expected.      
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ABSTRACT 

Protection and conservation of cultural and architectural heritage represent key problems worldwide 
and require advanced tools for structural assessment and monitoring under operational conditions as 
well as extreme loads. Vibration-based Structural Health Monitoring represents an attractive solution 
thanks to its little invasiveness and the ability to detect damage onset from the analysis of the global 
response of the structure without any prior information about the damage itself.  

The present paper illustrates the results of preliminary OMA tests aimed at setting up the continuous 
modal-based Structural Health Monitoring (SHM) of the Civitacampomarano belfry. The tower is 
located close to a landslide which might affect its structural safety, so timely assessment of possible 
damage plays a critical role for its conservation and maintenance. The architecture of the SHM system 
and the technological solutions adopted for continuous monitoring of the vibration response of the tower 
under operational conditions are described in this paper, pointing out the role of Operational Modal 
Analysis for the remote assessment of the health state of the structure. 

Keywords: Operational Modal Analysis, Structural Health Monitoring, Model Updating. 

1. INTRODUCTION 
Masonry towers are a very common structural typology in the Italian architectural heritage, and they 
mark the landscape of many historical city centers. Significant attention has been paid over the years 
about their dynamic and seismic behavior: in fact, masonry towers are often characterized by high 
seismic vulnerability, as also demonstrated by the heavy damage or collapses occurred after seismic 
events in the past [1]. 
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Structural Health Monitoring (SHM) in combination with advanced automated Operational Modal 
Analysis (OMA) techniques [2] represents an attractive technological solution for timely and remote 
assessment of the health state and performance of civil structures under operational conditions [3]. 
When applied to historical masonry buildings and towers, it can also provide essential information for 
the optimization of structural interventions or to support setting up of appropriate maintenance 
programs [4]. Modal-based SHM is a global monitoring strategy which exploits acceleration data 
related to the operational response of the monitored structure to experimentally estimate and track the 
evolution over time of its modal properties (natural frequencies, damping, modal shapes). The basic 
idea behind modal-based SHM is that modal properties can be used as damage sensitive features, since 
damage is assumed to affect the mass and/or stiffness properties of the structure. In addition, the global 
nature of the approach allows to use even a limited number of sensors to estimate natural frequencies 
with sufficient accuracy and assess the structural condition from their variations. However, a relevant 
drawback of this approach is the sensitivity of modal properties and, in particular, natural frequencies 
to environmental factors, such as temperature or humidity, so that damage is often masked by daily or 
seasonal fluctuations of damage sensitive features due to environmental variables. As a consequence, 
long-term monitoring of modal parameters becomes essential to harness the full potential of modal-
based SHM [5]. Setting up an effective modal-based SHM strategy is a challenging task, which requires 
an insight in the dynamic behavior of the monitored structures and appropriate consideration of 
technological aspects concerning sensor and measurement system selection to collect accurate raw data, 
effective data storage, and data processing aimed at tracking the patterns of the selected damage 
sensitive features in order to automatically detect anomalies in the structural response and issue 
appropriate warnings.  

The present paper illustrates the results of preliminary OMA tests aimed at the implementation of a 
modal-based SHM system for the Civitacampomarano belfry. The tower is located close to a landslide 
which might affect its structural safety, so timely damage assessment is critical role for its conservation 
and maintenance. The architecture of the SHM system and the technological solutions adopted for 
continuous monitoring of the vibration response of the tower under operational conditions are also 
herein described, pointing out the role of Operational Modal Analysis for the remote assessment of the 
health state of the structure. 

2. THE CIVITACAMPOMARANO BELFRY AND ITS MODAL-BASED SHM SYSTEM 

Civitacampomarano is a small town located in the Molise region in Southern Italy. The bell tower 
(Figure 1) of the ruined church of Santa Maria Maggiore is located in front of the access staircase to 
the castle, on Largo Vincenzo Cuoco; its erection dates back to the end of the Eighteenth Century [6]. 
The bell tower is the only part of the ancient religious building that did not suffered significant damage 
after the earthquake occurred in the region in 1903. 

The bell tower is built on a round arch in limestone and it is characterized by a quadrangular section. 
The structure has three levels with a terminal pyramidal cusp with a maximum height of 24.33 meters. 
Squared as irregular stone blocks characterize the outside masonry texture. The structure was accurately 
surveyed and no cracking pattern were identified. It is worth mentioning that in 1988 the bell tower 
underwent some structural interventions and extensive restoration works after the occurrence of damage 
affecting the bearing structure of the bell and the roof slab. 

After the preliminary visual inspection and survey, the sensor layout for continuous modal-based SHM 
of the tower was defined. This operation was particularly complex because the preliminary visual 
inspection and survey revealed the presence of a number of signal polluting sources, such as the 
pathways of electrical cables powering the clock and the bells. Thus, sensor cable paths were defined 
in a way to avoid to cross those noise sources; moreover, special care was paid to ensure appropriate 
shielding to the sensor cables. The outcomes of preliminary inspections were also exploited to define 
the most appropriate locations of the accelerometers and the measurement equipment of the SHM 
system.  
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Figure 1. The Civitacampomarano bell tower. 

 

In order to properly resolve the low-amplitude vibration response of the tower under operational 
conditions, high-sensitivity piezoelectric mono-axial accelerometers were installed. They were 
characterized by 10 V/g sensitivity, ± 0.5 g full scale range, and 0.1 to 200 Hz frequency bandwidth. 
The data acquisition system was characterized by 24-bit resolution, 102-dB dynamic range and on-
board anti-aliasing filter. 
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The dynamic response of the bell tower is measured at three different levels (Figure 2) by ten 
accelerometers installed in bidirectional configuration in a way able to ensure observability of the 
fundamental bending and torsion modes of the belfry. In particular, a couple of accelerometers were 
installed at an elevation of 11.84 m in one corner of the plan section of the tower; other two couples of 
accelerometers were placed at an elevation 16.43 m in two opposite corners; the remaining sensors were 
placed also at opposite corners of the base of the cusp at an elevation of 18.77 m. All data were 
simultaneously acquired by the measurement system located at the base of the tower and acting as a 
server for local data processing and storage. 

 

 
Figure 2. Section of the bell tower and sensors layout. 

 

Sensors were screwed to steel plates mechanically anchored to the masonry walls. The sensor cables 
converge to the first level of the tower at an elevation of 5.32 m, where they are plugged to the PC-
based data acquisition system (Figure 3). Acceleration signal are acquired at a sampling frequency of 
100 Hz. Raw acceleration data are stored in a MySQL relational database to simplify interrogation and 
data transmission in case of seismic events or for the estimation of the fundamental modal parameters 
based on 3600 sec long time series of the ambient vibration response of the structure. 

 

       
Figure 3. Data acquisition system (left) and installed sensors (right). 
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A number of records of the operational response of the tower have been collected and processed in order 
to check the functionality of the system and to carry out a preliminary estimation of the fundamental 
modal parameters. The main excitation sources were wind and bell swinging. Under such excitations, 
three fundamental modes could be identified, as discussed in the next section.  

The continuously estimated modal parameters are going to be used for data-driven anomaly detection 
based on advanced statistical pattern recognition approaches [7], after output-only compensation of 
environmental influence [8]. In addition, the experimentally estimated natural frequencies and mode 
shapes will be used to update a numerical model of the belfry. The updated model will be in turn used 
to indirectly monitor relevant mechanical properties of masonry.  

The modular nature of the SHM system makes easy the integration of additional sensors. If it will be 
deemed useful for model refinement or anomaly detection, the SHM system can be complemented with 
additional accelerometers, as well as with sensors of different type, such as temperature sensors, 
tiltmeters and displacement sensors. 

In the current stage of implementation of the SHM system, vibration measurements are continuously 
collected and they can be automatically processed in order to estimate the fundamental modal 
parameters of the tower. Automatic OMA will be carried out by means of an algorithm previously 
developed by some of the Authors [9]. In addition, a procedure for continuous, automated model 
updating is going to be developed and integrated into the SHM system in order to indirectly track the 
evolution over time of the elastic modulus of masonry and detect possible damage.  

The automatic and continuous model updating might also provide additional information about possible 
damage location and magnitude. The integration of model updating into vibration-based SHM system 
has been the object of significant research efforts. Particular attention has been paid in recent years to 
the possibility of using simplified models or meta-models to reduce the computational efforts associated 
with model updating. For instance, the suitability of this approach for the indirect monitoring of inherent 
properties of the monitored structure at varying temperature is discussed in [10]. In the context of the 
present application, an approach for continuous model updating based on meta-models is under 
investigation. If successful, it will be integrated into the SHM system, so that its data processing 
architecture can be schematically illustrated as shown in Figure 4. The resulting modal based SHM 
system will therefore be able to track the evolution over time of the modal parameters and, based on 
those estimates, continuously update the numerical model of the structure in order to indirectly monitor 
selected elastic uncertain parameters. The integration of advanced data-driven as well as model-based 
damage detection strategies in the same SHM system is expected to significantly enhance its reliability 
and robustness.  

3. PRELIMINARY OMA RESULTS 
The fundamental modal parameters of the tower were estimated by means of well-established OMA 
techniques operating in the frequency as well as time domain. Cross-correlation of the results provided 
by the different methods allowed to check their reliability 

The applied OMA techniques [11] are the Frequency Domain Decomposition (FDD) [12], the 
Covariance Driven Stochastic Subspace Identification (Cov-SSI) [13], and the Second Order Blind 
Identification (SOBI) [14]. 

FDD is a non-parametric frequency domain OMA method based on the Singular Value Decomposition 
(SVD) of the Power Spectral Density (PSD) matrix. The resonance peaks are identified from the 
singular value plots through peak picking; the corresponding singular vector represent good estimates 
of the associated mode shapes. 

Cov-SSI is a parametric time domain OMA method based on a state space description of the dynamic 
problem. The modal parameters are extracted from the state matrix and the output matrix of the structure 
estimated from measurements of the ambient vibration response of the structure. 
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Figure 4. Illustration of the data processing scheme of the modal-based SHM system. 

 

SOBI is a non-parametric time domain OMA method. It is a two-stage method, since it first provides 
an estimate of the mode shapes; natural frequencies and damping ratios are estimated afterwards, based 
on the estimated mode shape vectors. 

Before estimating the modal parameters, a pre-treatment of the raw data was carried out to check the 
collected acceleration time series for validity [15]. After having verified the absence of anomalies in 
the data, PSDs were computed according to the Welch procedure by applying the Hanning window and 
a 66% overlap, and obtaining a frequency resolution of 0.01 Hz. The singular value plots obtained from 
SVD of the output PSD matrix are shown in Figure 5; Figure 6 shows the complexity plots associated 
with the identified modes, which are normal. The first two modes are diagonal bending modes, while 
the third is a torsion mode (Figure 7). 

 

 
Figure 5. Singular value plots. 
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Figure 6. Complexity plots of modes I, II and III (from left to right). 

 

   
 Figure 7. 3D plots of the identified mode shapes: mode I, II and III (from left to right). 

 

The modal identification results obtained by the FDD method were confirmed by Cov-SSI and SOBI. 
The corresponding estimates are reported in Table 1, which confirms the reliability and accuracy of the 
obtained modal parameter estimates. 

 
Table 1. OMA results. 

Mode Type 
FDD Cov-SSI SOBI 

f (Hz) f (Hz) ξ (%) f (Hz) ξ (%) 

I Transl. 2.79 2.79 1.27 2.79 0.95 

II Transl. 3.10 3.10 0.94 3.11 0.74 

III Torsional 7.69 7.68 0.96 7.70 1.33 
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4. CONCLUSIONS 
The present paper illustrated the results of preliminary OMA tests aimed at setting up the continuous 
modal-based Structural Health Monitoring (SHM) of the Civitacampomarano belfry. The tower is 
located close to a landslide which might affect its structural safety, so timely assessment of possible 
damage plays a critical role for its conservation and maintenance. The architecture of the SHM system 
and the technological solutions adopted for continuous monitoring of the vibration response of the tower 
under operational conditions have been described, pointing out the primary role of Operational Modal 
Analysis in the process. The fundamental modes of the structure have been identified from 
measurements of its ambient vibration response, demonstrating the feasibility of a modal-based SHM 
approach for the structure. Automated OMA and finite element model updating procedures are going 
to be integrated to enhance the data processing capabilities of the system and to remotely identify 
possible damage under varying environmental and operational conditions. Those aspects are out of the 
scope of the present paper and they will be discussed in future publications.  
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ABSTRACT 

In structural health monitoring (SHM) placement of the sensors is often a problem and the more we can 

do to simplify this the better. In this paper, we will consider the case where displacement, angle and 

curvature is measured in the transition piece of an offshore wind turbine instead of the traditional 

solution where sensors are distributed over different heights of the tower. The two cases are investigated 

with respect to estimation of the modal parameters in an SHM application. 

Keywords: Structural health monitoring, localized sensors, wind turbine tower, modal parameters 

1. INTRODUCTION 

Structural health monitoring (SHM) of wind turbines are important for at least two reasons. First, it is 

important for optimization of the structures in the green energy production, and secondly, most of them 

will be offshore, and thus, difficult to reach. 

It is not the scope of this paper to give a covering overview of the literature, but just to point to some 

main principles in SHM of wind turbines, let us mention Luengo et al 2016, [1] where SHM of wind 

turbines are treated from a statistical pattern recognition point of view, and Oliveira et al 2018, [2], 

where the problem is treated from an operational modal analysis (OMA) point of view. 

In this paper, we will follow the ideas of reference [2], and discuss how a measurement system can be 

designed for offshore wind turbines obtaining maximum value for minimum investment. 

The problem of obtaining information from wind turbine data is well illustrated in Tarpø et al 2021, [3] 

where a wind turbine has been equipped with a measurement system of the localized type that is to be 

considered in this paper.  

Both in reference [2] and [3], OMA is used to extract information about the wind turbine from the 

operating response data. However, in these two cases, good results have been reached using OMA as 
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described for instance in Brincker and Ventura, [10], but two different approaches are being used for 

the measurement system.  

In [2] the classical wisdom has been followed where it is good practice to distribute the sensors over 

the structure, see for instance [10]. It makes sense to follow this principle, because if sensors are sitting 

closely around the same point, they tend to measure more or less the same signal, but if they are more 

distributed over the structure, we have more information about the mode shapes. 

On the other hand, if SHM is going to be widely used on wind turbines, only the most effective systems 

that provide optimum information for a minimum investment will be used, because competition will be 

strong in this growing market. 

The idea of the measurement system used in [3] is a so-called localized system where all sensors are 

placed in the transition piece. The reason why this is a good position for a measurement system is mainly 

that it is simple to mount and simple to maintain because you don’t have to climb to higher levels inside 

the wind turbine tower in order to reach the sensors, and you minimize the amount of cables. The 

considered localized system has been developed by Sigicom, see [11], where the principal sensors are 

geophones. In this case the geophones has to be calibrated so that the influence of the natural frequency 

of the geophones can be removed, see Brincker et al [6], and signals can be integrated and/or 

differentiated to obtain both displacement, velocity and acceleration with quite low noise floors like 

described in Brandt and Brincker [9]. 

The scope of this paper is to consider if and why it is indeed a good idea to consider a localized 

measurement system instead of a more distributed measurement system following the conventional 

practice. 

2. MEASUREMENT SYSTEMS 

We are considering two measurement systems to acquire the operational response of wind turbine 

towers, a conventional system with distributed sensors, and a localized system where all sensors are 

mounted at the same section. 

The conventional system is shown to the left in Figure 1. We are here assuming sensors in three levels, 

the lowest level assumed to be in the transition piece between the tower and the foundation, relative 

height at 0.4, and the next two systems is the relative heights 0.65 and 0.90. We assume that we need 

two sensors in the x-direction to measure torsion movements. We do that even though torsion modes 

are often not observed for wind turbines, because it is good practice to obtain the bending displacement 

in the x-direction as an average of the two sensors to get rid of possible mechanical torsion noise and 

to be able to check to what extend torsion is present. 

With the conventional measurement system, we can define the following DOF’s  

(1)      1 1 2 3 1 2 3{ , , , , , }T

x x x y y yu u u u u u=d  

where xnu  and  ynu  are the horizontal deflections in the x- and y- directions at the three levels n  starting 

from the bottom. The corresponding signals are 

(2)     1 1 2 1 3 4 3 5 6 5{ , , , , , , , , }T

x x y x x y x x ys s s s s s s s s=s  

and the relation between the signals and the DOF’s can then be defined as 

(3)      1 1 1s = Td  

where  1T  is a transformation matrix with rank 6.  

The localized system is shown in Figure 1 to the right where four 3D sensors are mounted in the same 

section, normally at the transition piece between the tower and the foundation. The three components 

T (horizontal and perpendicular to the surface) , L (horizontal tangential to the surface), and V (vertical) 
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are also defined in the Figure 1 for the sensor mounted in point 1. In this case we are also adding a 

vertical strain gauge at each 3D sensor with the component S. The corresponding signals are 

(4)    2 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4{ , , , , , , , , , , , , , , , }T

T L V S T L V S T L V S T L V Ss s s s s s s s s s s s s s s s=s  

The good question is now how we should define the DOF’s. One way to do this is simply to say, that 

the section where the sensors are mounted is moving as a rigid body, and as result has only 6 DOF’s, 

the three displacement components, and the three angles. But since in the case, we will only consider 

tower bending where we have no vertical displacement, we will not follow this approach. We will 

instead only use the four DOF’s of the rigid body movement, the two x- and y-displacement and their 

corresponding angles. In order to achieve the same number of DOF’s as for the conventional system, 

we also add in the bending curvature measured by the strain gauges. Thus, our 6 DOF’s can be defined 

as 

(5)     { , , , , , }T

x x x y y yu u u u u u   =d  

where the quantities  u  (angle) and  xu  (curvature) are defined by classical beam theory 

(6)     

2

2

( ) ( )
;x x

x x

du z d u z
u u

dz dz
 = =  

and similar for the y-direction. Here is it important to note, that these DOF’s will have different units, 

which is not allowed in case we will do OMA, because mode shapes must be dimensionless. One way 

to deal with the problem is to multiply by a length D  so that all DOF’s has the same unit 

(7)     
2 2

2 { , , , , , }T

x x x y y yu u D u D u u D u D   =d  

If we define D  as the diameter of the tower and assume a slenderness ratio of the tower of 20, then the 

dimensionless diameter is 0.05. We can then define the relation between the signals and DOF’s 

(8)     
2 2 2s = T d  

where 2T  as before is a dimensionless transformation matrix of rank 6.  

 

Figure 1. The two considered measurement systems. Left: The conventional system with sensors 

distributed over the height of the wind turbine tower. Middle: The localized sensor system mounted in 

the transition piece between the tower and the foundation. Right: The Sigicom SHM01 sensor system, 

see reference [11], developed for this kind of applications. 
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First mode 

Second mode 

Before we leave this section it is worth considering one of the important reasons for using the localized 

system instead of the more conventional one.  

If we had used a conventional system with only two sensors at each level like in [2], then if we loose a 

sensor, we also loose a DOF. Loosing a DOF might significant reduce the quality of the subsequent 

OMA, and this might be crucial for the SHM application. 

Now our conventional system has a little more sensors than what is required to obtain the 6 DOF’s in 

case all sensors are working. Mathematically this can be expressed by the fact that we can remove some 

rows in the transformation matrix 2T  without loosing rank. We can loose any of the sensors in the x-

direction because we have two sensors in this direction. But if we loose a sensor in the y-direction, then 

we loose rank, we loose a DOF, and obtain less accurate OMA results. 

The special quality of the localized system is that we can loose any of the 16 sensors, and still be able 

to obtain the full number of DOF’s. Mathematically this means, that we can remove any row in the 

transformation matrix 2T  without loosing rank. The rank will remain 6 no matter what sensor we loose. 

We can simply continue our high quality SHM analysis, and replace the faulty sensor whenever we 

make a service visit for other reasons. 

This is extremely important, because in future SHM applications, where the SHM system is a part of 

the design base that guaranties the reliability of the structure, the robustness of the measurement system 

is essential. 

3. TOWER MODES 

As we have just seen in the previous section, the information that we pick up in the DOF’s are 

information about how the structure moves – mode shape information – and then also about the natural 

frequencies and the damping as it is well-known from general OMA principles, [10]. 

In this investigation we will concentrate on the first four bending modes of the tower, that is the first 

and the second fore-alt and side-side modes. Normally we would have to take the orientation of the 

rotor into account, because the fore-aft and the side-side modes are defined by the direction of the 

nacelle, so that fore-aft modes are moving the rotor back and fourth in the wind direction, and the side-

side modes are moving the nacelle perpendicular to the wind. 

However, it is not the scope of this paper to consider how the dominant modes are turning around with 

direction of the nacelle, like it has been done for instance in Tarpø et al [3], but just to investigate if we 

can estimate modal information from a localized measurement with the similar accuracy as when using 

a classically distributed measurement system. 

Therefore, we will just assume a simple model for the four first tower modes, where we will use that 

these modes are mainly determined by the stiffness of the tower, and top mass. Neglecting the mass 

distribution in the tower, and assuming constant stiffness of the tower over the height, it means that the 

tower modes are just third order polynomials.  

We assume a fixed support at the bottom of the tower, which introduce the conditions for the both the 

first order and the second order modes 

(9)      
0

0 :
0

u
z

u

=
= 

 =
 

For the first and second order modes we have the top conditions   

(10)     
                        : 0

1:
                      : 0

u
z

u

 =
= 

=
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Figure 2. First and second order bending modes of a wind turbine tower modelled as a third order 

polynomial. 

 

Table 1. Model parameters for the tower modes 

Mode 1 2 3 4 

Frequency [Hz] 0.33 0.4 2.1 2.7 

Damping ratio 0.06 0.01 0.03 0.02 

 

and we then achieve the mode estimates as shown in Figure 2 that correspond well with the mode shapes 

shown in [2]. 

Natural frequencies and damping ratios for the four modes are given in Table 1. Mode 1 is the first fore-

aft mode which is know to have a relatively high damping, and mode 2 is relatively close to mode 1. 

Mode 3 is a fore-aft mode with somewhat lower frequency than the corresponding side-side mode which 

is often the cases due to difference in the nacelle inertial moments in the fore-aft and side-side 

directions. 

4. SIMULATOIN 

The responses for both systems are obtained using the following procedure 

• Mode shapes for the DOF’s as given by Eqs. (1) and (7) 

• Mode shapes normalized to unit length 

• The random DOF response simulated using the fftsim function in the OMA toolbox, [12] with 

white noise input 

• Sensor signals obtained using Eqs. (3) and (8) 

• Signals integrated 2 times to achieve acceleration signals using the principles in Brandt and 

Brincker [9]. 

• Noise added with an average (over the signals) signal-to-noise ratio of 60 dB 

The signals were sampled with a sampling frequency of 7 Hz, and the total time length of the simulated 

data sets was about 3 quarters of an hour. 

We have here used the scaling as defined by Eq. (7). We could have used some dimensionless additional 

scaling to the signals of the localized system, but since both the classical distributed system and the  

307



 

Figure 3. FDD plots according to Brincker et al [7] for the two cases. Left: distributed measurement 

system. Right: localized measurement system. 

 

localized have around 7 to 8 in ratio between the largest and smallest standard deviations of the DOF’s, 

nothing more was done concerning scaling. 

The results of the simulated responses are shown in Figure 3. As we can see, there is a surprisingly little 

difference between the two plots. We can see that the main difference is that the conventional system 

gives us a bit more participation of the fore-aft modes.  

5. IDENTIFICATION 

The identification is performed using the enhanced frequency domain decomposition by Brincker et al 

[7,8] using a data segment size of 512.  

One singular vectors were picked from each of the peaks representing the mode shapes, and the 

frequency and damping was then identified from the modal correlation functions in the time domain 

like described in Brincker et al [8]. The identified modes were then fitted to the empirical PSD’s using 

the energy principle in Brincker et al [5] and the results are shown in Figure 4. Some of the modal fits 

show an underestimated energy, this is due to an underestimated modal coordinate using the FDD. 

MAC values between theoretical mode shapes and estimated made shapes are shown in Figure 5. 

Results of frequency and damping are given in Table 2. 

 

 

Figure 4. Identification of the four modes using the enhanced FDD. left: The first two tower modes. 

Right: the last two tower modes. Top: Results of using the distributed measurement system. Bottom: 

Results of using the localized measurement system. 
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Figure 5. MAC matrices for the two considered system. Left: MAC matrix for the distributed 

measurement system. Right: MAC matrix for the localized measurement system. 

 

Table 2. Estimated modal parameters for the tower modes. 

Mode 1 2 3 4 

Frequency [Hz], distributed system   0.3287     0.3817   2.1064 2.7028 

Damping ratio, distributed system   0.0686     0.0292    0.0189  0.0145 

Frequency [Hz], localized system 0.3335     0.4054 2.0991 2.7027 

Damping ratio, localized system 0.0666     0.0160 0.0191 0.0164 

 

6. DISCUSSION AND CONCLUSION 

As it appears from the results, the OMA identification is more or less the same for the two systems. If 

we should declare a winner, the localized system is doing a bit better, that is accuracy of frequencies 

and damping ratios for mode 2, and MAC values due to larger off-diagonal elements for the distributed 

system. 

In order to summarize the advantages of using the localized system we can conclude: 

• Identificatoin uncertainty seem to be the same for the two systems 

• Localized system is easier to mount and maintain 

• Localized system can lose sensors and continue working, and any sensor can get lost – and 

replaced during scheduled service 

One more very important advantage should be mentioned. That is the influence of tilt. Whenever a 

horizontal sensor is being tilted, its signal is getting disturbed by the gravity, and the influence can only 

be removed if the dynamic tilt, i.e. the angle given by the DOF u , is known, see Taarpø et el, [4]. The 

localized measurement system estimates this quantity, and thus, provides opportunity to remove the tilt. 

The conventional distributed system does not. 

Finally we might ask: What if we compare a distributed system with two levels of sensors to a localized 

system where we have skipped the strain? In this case we will again have the same number of DOF’s 

in the two measurement systems. Four displacement DOF’s in the distributed system, and four DOF’s 

in the localized system. What we learned from the present analyses indicate, that we will achieve similar 

results, but it is be further investigated. 
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ABSTRACT 

Italy is a seismic prone country with a great heritage of churches and historic masonry buildings that 

often suffer damage due to earthquakes. For buildings of high cultural value, the damaged structural 

systems are usually secured through immediate interventions, with the need of monitoring the evolution 

of damage in time up to the final restoration. 

This paper presents some of the results of the research activities carried out on the church of Santa 

Maria in Via in Camerino, (central Italy), severely damaged by the 2016 Central Italy seismic sequence 

and secured through various interventions. In particular, a massive external retaining steel structure was 

built to prevent the collapse of the façade and, in the subsequent years, a static and dynamic monitoring 

system has been installed with the aim of monitoring the health status of the church and preventing the 

evolution of the kinematics triggered by the 2016 earthquake. 

Ambient vibration tests have been performed on the church and its global dynamics has been identified 

by means of Operational Modal Analysis techniques. Also, a finite element model of the church has 

been developed, whose parameters have been optimised through the Particle Swarm Optimisation 

algorithm. Finally, starting from the results of the updated model, the sensor placement was optimised 

by employing the Effective Independence algorithm, in order to increase the efficiency of the 

monitoring system in tracking all the preliminarily identified modes. 

Keywords: structural health monitoring, operational modal analysis, dynamic identification, cultural 

heritage, optimal sensors placement, particle swarm optimization. 

311



1. INTRODUCTION 

The key part of a Vibration Based Structural Health Monitoring (VB-SHM) system are sensors, and 

costs are largely influenced by the type and number of sensors to be installed, as well as the amount of 

data to be processed. Therefore, sensor number and position optimization are crucial in the design and 

implementation of an effective VB-SHM system [1]. Moreover, it is usually unnecessary to monitor all 

Degrees Of Freedom (DOF) of a structure because of the large amount of data to be acquired and 

processed. In this way, the Optimal Sensor Placement (OSP) can help to take decisions on how many 

and which DOF of a structure need to be monitored. Indeed, the OSP objective in a dynamic monitoring 

framework is that of finding the minimum number of DOF to be monitored to get enough information 

to describe the dynamic behaviour of the structure with good accuracy [2]. One of the first OSP 

applications was presented by Kammer in 1991 [3], where the optimization of the monitoring system 

for an orbiting space station is performed using the Effective Independence (EI) method. Successively, 

OSP has received considerable attention and, to date, several applications can be found in the literature. 

Heo et al [4] presented a kinetic energy optimization technique to obtain a higher signal-to-noise ratio 

to better identify modal shapes. In the work of Guo et al [5], a OSP performance index based on a 

genetic algorithm is presented. Flynn et al [6] proposed a Bayesian approach to minimize the type I and 

II error in measurements. Worden [7] and Li [1] presented review papers focusing on OSP in SHM, 

comparing many different algorithms; however, EI has proven to be a robust and simple method to 

apply. Moreover, differently from genetic algorithms, EI method does not rely on computationally 

intensive search techniques. In the work of Jiang et al. [8] a very useful numerical example is provided 

for the implementation of the EI algorithm. 

The design of a VB-SHM system requires an in-depth knowledge of the dynamics of the structure to be 

monitored, but, usually, dynamic identification tests are carried out with a limited number of sensors, 

and the identified modal shapes may suffer from spatial aliasing. Performing a study to optimize the 

number and position of sensors based only on the identified modal components may not be effective. 

Finite Element Models (FEM) can substantially contribute to this preliminary phase, especially in the 

case of complex structures for which uncertainties on material characteristics and boundary conditions 

may be significant. Performing a Model Updating (MU) procedure in order to obtain a FEM that 

accurately represent the dynamics of the structure to be monitored is thus particularly important for the 

optimal positioning of sensors. 

One of the main difficulties in the application of MU in the field of civil engineering is undoubtedly 

found in facing historical structures, which are characterized by an enormous complexity in terms of 

geometry, material properties, loads and boundary conditions, resulting in complex FEM that are 

difficult to validate. Some interesting works can be found in the literature dealing with the MU of 

historical masonry buildings [9-13]. MU of FEM is essentially based on the minimization of an error 

function that summarizes the distance between the dynamic behaviour of the model and that of the real 

structure. Also, the role of artificial intelligence algorithms in this field begun to emerge in recent years. 

In particular, a family of artificial intelligence algorithms, namely Swarm Intelligence (SI), seems to be 

very promising. SI is a family of population-based meta-heuristic algorithms inspired by the collective 

behaviours of insects, such as ants, termites, bees, wasps and other animals capable of performing 

certain intrinsic social actions [14]. The most common algorithm belonging to SI is the Particle Swarm 

Optimization (PSO) [15], and some interesting applications of its use for the MU of civil engineering 

FEM can be found in [16,17]. Anyway, a critical discussion of the effectiveness and performance of 

individual methods and a comparison of them is beyond the scope of this work. 

This paper presents an application of the OSP technique for developing a VB-SHM system of an 

historical church severely damaged after the seismic sequence that stroke the Central Italy in 2016. The 

OSP analyses are carried out based on a FEM updated with the support of the PSO algorithm. At first, 

a description of the church case study is provided, together with a brief description of the dynamic tests 

performed on the church. Then, the FEM of the church is described, and the application of the 

optimisation algorithm for its updating is presented. Finally, after a brief description of the adopted EI 

algorithm, OSP application is presented and the obtained results are discussed. 
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2. PRESENTATION OF THE CASE STUDY 

2.1. Overview of the church of Santa Maria in Via in Camerino  

The church of Santa Maria in Via (Figure 1a) is located in the center of Camerino town in Central Italy. 

The first evidence of the existence of the church dates back to the 13th century, and up to the 16th 

century the church was a poor and irregular building [18]. The actual building was built between 1639 

and 1642 and it is characterized by an irregular trapezoidal plan resulting from the combination of the 

pre-existing buildings; the latter were characterized by a wall fabric with a particularly incoherent core 

so that the external cladding was added to regularize the perimeter. The church is composed by many 

constructive elements typical of this type of buildings: the tiburium, which rises more than 8 m above 

the inner frame, the bell tower, that has an octagonal plan with a rather slender belfry, and a façade, 

which consists of two levels, the lower one incorporated into the main body of the church, and the upper 

one that rises next to the tiburium, to a maximum height of approximately 23 meters above the ground.  

Following the seismic events that struck the Central Italy in 2016, in conjunction with the adverse 

environmental conditions of the winter months of 2017, the church suffered many damage that affected 

the bell tower, which underwent a partial collapse, the wooden roof and the camorcanna fake dome 

(both suffering a partial collapse), and the façade, with scattered cracks on both internal and external 

walls. In Figure 1b, photos of the damage suffered by the church are shown. The greatest collapse 

occurred in the rear part of the tiburium, which collapsed mainly inside the nave as a consequence of 

the progressive damage caused by the seismic activity of 26th October 2016 and the heavy snowfall of 

January 2017. Both the interior and exterior walls of the nave and apse are not affected by significant 

collapses or cracks, except for the two side altars adjacent to the façade section, which suffered 

significant damage to the arches and vault. At the south-west corner, under the shaft of the bell tower, 

there are diagonal cracks, which are concentrated on the floor bands between openings. The lower level 

of the façade underwent an out-of-plane rotation, while the upper part underwent a rigid translational 

motion that also affected the portion of the tiburium adjacent to the façade. 

After the seismic sequence that produced many damage, the structure was secured with several 

interventions (Figure 1c). At first, a massive external retaining steel structure designed to prevent the 

front body collapse was built. The structure covers the front side and the two lateral sides of the anterior 

façade body for the whole height. To ensure the system stability in case of extreme events and to confine 

the base body of the church, fourteen steel strand cables connected to the steel structure and surrounding 

the whole church, are used. The collapsed portions of masonry on the lateral walls of the façade, 

produced by the overturning mechanism, were filled with steel latticed systems to restore gravitational 

loading paths. Moreover, a provisional roof was built to protect the interior of the church, together with 

a latticed structure built to prevent the out of plane collapse of the tiburium walls. 

2.2. Preliminary dynamic identification tests 

Once the securing systems were completely mounted, it was decided in 2020 to develop a combined 

static and dynamic monitoring system to control the health status of the church over time; the adopted 

dynamic system consists of a VB-SHM system. As already discussed, identifying the global dynamics 

of the building is the first step to design and develop a monitoring system. The identification of the 

church global dynamics was carried out through ambient vibration tests, employing sixteen 

accelerometers and two sensor configurations, as shown in Figure 2a and 2b. To get information on the 

overall dynamic behaviour of the church, it was decided to monitor eight points located around the 

ellipse of the tiburium, at two different heights from the ground level. At each point (from A to H) two 

uniaxial accelerometers were placed with measurement directions along the main axes of the church 

hall (called x and y directions). As for the instrumentation, PCB 393B31 accelerometers with sensitivity 

of 10V/g, NI 9234 analog-to-digital conversion modules, a 9045 cRIO and three 9185 cDAQs, were 

used. A distributed sensor network was set up by placing one cRIO for the measuring station close to 

the reference point 1B and three mobile cDAQs near the remaining measuring points. Synchronization 

was achieved through Time Sensitive Networking (TSN) technology providing distributed time 

synchronization and deterministic communication using standard ethernet networks.  
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The identification of modal parameters was carried out through OMAs, using the Principal Component 

- Subspace Stochastic Identification (SSI-PC) technique. Because acquisitions relevant to the two 

configurations are asynchronous, a data merging operation through scaling techniques was used in order 

to obtain correct mode shapes; in this case, global results were obtained applying the PoSER (Post 

Separate Estimation Re-scaling) technique. The global results in terms of frequencies, damping ratios 

and modal shapes are shown in Figure 3a, while in Figure 3b the relative AutoMAC matrix is shown. 

Globally, five vibration modes that mobilize the whole building, were identified. It is interesting to note 

that, despite the complex crack pattern, the dynamics of the structure presents very well decoupled 

modes, which could be expected for the undamaged system.  

 

(a) (b) (c)  

Figure 1. The Santa Maria in Via church: (a) pictures before the 2016 earthquakes; (b) damage suffered after 

the seismic sequence, (c) securing systems. 
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Figure 2. Sensor layout for test configurations: (a) Configuration P1 and (b) P2. 
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[Hz]      

2.11 1.00 0.00 0.06 0.06 0.00 

2.61 0.00 1.00 0.00 0.00 0.02 

3.34 0.06 0.00 1.00 0.29 0.02 

3.64 0.06 0.00 0.29 1.00 0.00 

3.97 0.00 0.02 0.02 0.00 1.00 

 2.11 2.61 3.34 3.64 3.97 

1° mode exp: 

f = 2.11 Hz 

x = 0.95 % 

2° mode exp: 

f = 2.61 Hz 

x = 1.01 % 

3° mode exp: 

f = 3.34 Hz 

x = 0.95 % 

4° mode exp: 

f = 3.64 Hz 

x = 1.17 % 

5° mode exp: 

f = 3.97 Hz 

x = 0.93 % 

AutoMAC matrix 

(a) (b)  

Figure 3. Global dynamics of the church: (a) modal parameters relevant to the five identified global modes, (b) 

AutoMAC matrix. 

3. FINITE ELEMENT MODELLING AND MODEL UPDATING 

The geometry of the church has been surveyed, and the technical drawings have been updated 

considering the structural damage. With regard to the construction materials, the church has a regular 

texture brick exterior cladding, made to make the wall fabric homogeneous, remediating to the 

numerous aggregations undergone by the building over the years. In-situ or laboratory mechanical tests 

on masonry have not been carried out, but a careful visual inspection has made it possible to classify 

the different types of masonry. A total of four different masonry typologies (M1, ..., M4) can be 

recognized, as illustrated in Figure 4. M1 masonry is composed of two outer layers of regular-textured 

brickwork, which are not connected to each other, and which contain a rubble infill. This type of 

masonry is used to construct the perimeter walls of the façade. M2 masonry is a multi-layer stone 

masonry with irregular courses and is used to build the inner walls of the façade and few walls of the 

church body, mainly those with high thickness. The M3 masonry is a double layer brickwork with 

rubble filling and, as for M1, the connection between the different layers is almost absent. This typology 

is adopted for most of the walls of the church and, as a consequence, presents diffused thicknesses due 

to the variation of the thickness of the rubble infill. Finally, the M4 masonry is composed of two layers: 

the inner one is made of masonry bricks, while the outer one is constituted by rough stone blocks with 

irregular courses. This typology is used for the walls of the tiburium. The parts of the church that 

collapses (rear part of the tiburium and lateral sides of the façade) are now filled with steel latticed 

systems, indicated as Braced-up regions in Figure 4, which are considered as additional material to be 

added to those previously described. Within the lateral volumes of the church and at different heights, 

there are many wooden floors which are localized in Figure 4 . Starting from this material survey, an 

initial estimate of the material mechanical characteristics has been done, and a FEM is developed. 

The FEM is developed with the ANSYS software, and includes the whole body of the church, modelled 

with tetrahedral solid elements. The numerical model is composed by five different materials based on 

the definitions given in detail in the previous section. The geometric model has been divided into further 

sections to facilitate the control of the meshing operations. The wooden floors inside the church are 

modelled with shell elements, namely isotropic plates, because they contribute to the development of 

the box-like behaviour of the building, while the roof is not modelled and only its mass is taken into 

account, because the main part of it collapsed after the earthquakes. Moreover, the external steel 

securing system is modelled as well, since it is in contact with the church façade and, therefore, can 

contribute to the whole structural dynamic response; beam elements are adopted to model both the steel 

trusses and the steel cables surrounding the whole church. As far as restrains, the fixed condition is 
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assumed. All modelled elements are automatically meshed by the software, resulting in a FEM 

consisting of 538275 nodes. All construction materials are assumed homogeneous, elastic and isotropic. 

Some pictures of the model and an initial estimate of the elastic moduli are shown in Figure 5. 

 

Masonry E1   Masonry E2  Masonry E3 

Masonry E4  

Timber 
floors 

E6=600 N/mm2 

E5=1500 N/mm2 

Braced-up regions E5 

 

Figure 4. Different types of masonry recognized during the visual inspection and localization of wooden floors 

and repaired regions (braced-up regions). 
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Figure 5. Pictures of the model, details of the created mesh and an initial estimate of the mechanical 

characteristics of the construction materials. 
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3.1. Modal updating through Particle Swarm Optimization algorithm 

The aim of Model Updating (MU) of FEM is to numerically reproduce the dynamic behaviour of the 

structure experimentally identified through OMA procedures. In this work, a matlab routine was 

implemented to automatically calibrate the model parameters via the Particle Swarm Optimization 

(PSO) algorithm. PSO is a stochastic optimization technique inspired by the social behaviour of a 

population of birds and applied in many research areas. In PSO, a number of particles are placed in the 

search domain of some objective function, and, for each position assumed by the particles, this function 

is calculated. Each particle then determines its movement through the search domain by combining 

some aspect of its own position and the best-fit position found with those of one or more members of 

the swarm. The aim of this algorithm is to find the global minimum of the chosen objective function. 

Each individual in the particle swarm is composed of three n-dimensional vectors, where n is the 

dimension of the search space. At the beginning, the particles are distributed randomly in the search 

space and a random velocity vector is defined, which is why PSO is called a stochastic algorithm. 

During the iterations the velocity of each particle is accelerated towards its previously found best 

position and towards the best solution found by the particle group. Therefore, this velocity is governed 

by the two best values found so far (personal and group) and by the inertia the particle is subjected to. 

𝐩𝑡+1 = 𝐩𝑡 + 𝐯𝑡+1 (1) 

𝐯𝑡+1 = 𝑤𝐯𝑡 + 𝑐1𝑟1(𝐩𝑏𝑒𝑠𝑡
𝑡 − 𝐩𝑡 ) + 𝑐2𝑟2(𝐩𝑏𝑒𝑠𝑡𝑔𝑙𝑜𝑏𝑎𝑙

𝑡 − 𝐩𝑡 ) (2) 

where p is the position and v the velocity at time t. The three vectors that allow to evaluate the velocity 

at each iteration are calibrated and weighted through three coefficients 𝑤, 𝑐1, 𝑐2 that are defined as 

hyperparameters; moreover, the contribution of the position of the single particle and the position of 

the group of particles are weighted through two coefficients 𝑟1 and 𝑟2. The hyperparameter 𝑤 is used 

to define the ability of the swarm to change its direction. For the sake of brevity, the meaning of these 

parameters can be found in literature [14]. 

The variables considered for the analysis are the masonry elastic moduli E1, E2, E3 and E4 introduced 

in the previous paragraph and the elastic modulus E5 of the material used in the repaired regions. The 

objective function is shown in eq. 3. 

𝑒𝑟𝑟(𝐞) = ln (1 + |
𝑓𝑛𝑢𝑚(𝐞)−𝑓𝑒𝑥𝑝

𝑓𝑒𝑥𝑝
| + (1 − 𝑀𝐴𝐶𝑛𝑢𝑚,𝑒𝑥𝑝.(𝐞))          where: 𝐞 = 

[
 
 
 
 
𝐸1

𝐸2

𝐸3

𝐸4

𝐸5]
 
 
 
 

 (3) 

where err(e) represents the objective function and returns a scalar value. The comparison is made 

between the experimental (exp) modal parameters identified though OMA, and the relevant numerical 

(num) ones obtained from FE analysis. In detail, natural frequencies and mode shapes of the 5 vibration 

modes are considered in the updating procedure, assuming that the algorithm converges below an error 

threshold of 5%. Table 2 synthetizes the results of the updating process. The masonry stiffness values 

for the church façade and the main body turned out to be much lower than the initial estimates shown 

in Figure 5, which is consistent with the severe crack pattern of the church. On the other hand, the 

tiburium requires much higher values of the modulus of elasticity to match the experimental results. 

The latter aspect might be explained by the presence of the latticed structure to prevent the out of plane 

collapse of the tiburium walls. The material for braced-up regions also needs much higher modulus of 

elasticity values of around 15000 MPa. These calibrated elastic moduli allow the dynamics of the 

structure to be well represented under operational conditions, i.e. with low vibration levels. The results 

of the modal analysis at the end of the optimization process are shown in Figure 6, where the numerical 

modes are represented together with the corresponding experimental ones. Table 1 shows the MAC 

values between the optimized and experimental modes and a comparison in terms of frequency. As can 

be seen from the terms on the diagonal, a very good match has been achieved for the first 5 modes. 
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Table 1. Comparison between experimental and 

numerical results 
 

 
Table 2. Preliminar results of the 

updating procedure 

Mode 

Frequency  Young modules 

Experimetal Numerical Error 
MAC 

 Material E Eupd. 

[Hz] [Hz] [%]   [MPa] [MPa] 

1 2.11 2.08 1 0.95  E1 1092 605 

2 2.61 2.76 2 0.86  E2 1230 415 

3 3.34 2.92 3 0.89  E3 1200 401 

4 3.64 3.30 4 0.78  E4 1365 1542 

5 3.97 3.86 5 0.94  E5  1500 16100 

 1° mode exp: 

f = 2.11 Hz 

x = 0.95 % 

1° mode num: 

f = 2.08 Hz 

2° mode exp: 

f = 2.61 Hz 

x = 1.01 % 

2° mode num: 

f = 2.76 Hz 

3° mode exp: 

f = 3.34 Hz 

x = 0.95 % 

3° mode num: 

f = 2.92 Hz 

4° mode exp: 

f = 3.64 Hz 

x = 1.17 % 

4° mode num: 

f = 3.30 Hz 

5° mode exp: 

f = 3.97 Hz 

x = 0.93 % 

5° mode num: 

f = 3.86 Hz 

 

Figure 6. Optimized numerical modes with the corresponding experimental ones. 

4. OPTIMAL SENSORS PLACEMENT 

The method EI is an iterative method: the set of candidate positions is quickly reduced to the number 

of available sensors. The vector 𝑬𝑫 represents the distribution of "Effective Independence" of a set of 

candidate positions and it is defined as the diagonal of the matrix [7], 

𝑬 = 𝝍𝑇𝝍{𝝍𝑇𝝍}−1𝝍𝑇 (4) 

where 𝝍 is a matrix of FE target modes partitioned according to a given sensor distribution. The i-th 

term of 𝑬𝑫 represents the contribution of the sensor at the i-th position to the linear independence of 

the modes. If EDi is equal to 0, the sensor at that position does not contribute; if EDi is equal to 1, that 

position must be maintained in the final sensor configuration. Different sensor positions are classified 

iteratively and those that do not contribute are identified and eliminated. The best approximation of the 

optimal configuration is achieved by deleting one position at a time. In this work, EI has been 

implemented in a MATLAB routine and the analysis has been carried out taking into account 5 modes 

of vibration considering only the DOFs on the external surfaces of the model (they must be accessible 

for the installation of a sensor), more than 250,000 translational degrees of freedom are possible. To 

make the analysis faster, the points to be analyzed were randomly sampled to 25,000. After that, each 

iteration eliminates the position that less contributes to the system's Effective Independence, i.e., the 

position with the lowest ED coefficient. The iterations end when only 5 positions remain, which possess 

ED=1. With the aim of limiting the number of sensors as much as possible, 2 of the 5 points identified 

were selected manually. Figure 7 shows the results of the OSP analysis carried out on the updated model 

of the church. 
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Figure 7. Results of the OSP analysis carried out on the updated model. 

5. CONCLUSIONS 

The design of a vibration-based structural health monitoring system requires a complete understanding 

of the dynamics of the structure to be monitored. Finite element modelling can substantially contribute 

to this preliminary phase, especially in the case of complex dynamic structures where uncertainty about 

material characteristics and boundary conditions may be significant. The modelling of the church of 

Santa Maria in Via has proved to be particularly challenging and, in this case, the Particle Swarm 

Optimization algorithm has been particularly suitable. The family of Swarm Intelligence is composed 

of several algorithms; furthermore, also the class of Genetic algorithms is becoming more and more 

popular in dealing with this type of problem. Furthermore, dynamic identification tests are carried out 

with a limited number of sensors, and the identified modal shapes may suffer from spatial aliasing, 

especially in those cases where it is difficult to make simplifying hypotheses (e.g. presence of rigid 

floors). Performing a study to optimize the number and position of sensors from only the identified 

modal components may not be effective. On the other hand, a finite element model has many degrees 

of freedom and manually choosing which is the most interesting to monitor can be a non-trivial 

challenge. It is therefore necessary to implement algorithms for optimal sensor placement and in this 

work Effective Independence method has been used due to its easiness of interpretation and 

implementation. Again, this is an actual problem with the increasing adoption of artificial intelligence 

algorithms, and it will be interesting as a future development to study which methodology is the most 

effective. 
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Abstract 

 

Recently, health monitoring of civil infrastructure systems has attracted a lot of attention.  Monitoring 

systems such as acoustic emission sensors used in bridge damage detection need to be empowered 

in the range of micro watt. Ambient ubiquitous vibration energy can be converted to electrical energy 

and used as a suitable resource of energy for this purpose. This paper focuses on frequency bandwidth 

optimization of a vibro-impact bistable piezoelectric energy harvester device for supplying power to 

embedded structural health monitoring self-powered sensors of highway bridges. The narrow band 

operating frequency bandwidth makes the majority of typical harvesters. However, these harvesters are 

inefficient due to this fact that in real life the external excitation frequencies have broadband spectrum. 

Therefore, increasing the frequency bandwidth of a vibration energy harvester improves the 

performance of the energy conversion. By broadening the operating frequency of a harvester, the 

obtained power will be increased over a range of working frequencies. A new design is proposed in 

which a cantilever beam containing a pair of permanent magnets and a motion limiting barriers are used 

for harvesting the energy The frequency bandwidth of the system is broaden by adding nonlinearity to 

the harvester comes from two sources: permanent magnets and vibro-impact motion. The optimum 

physical characteristic values of vibro-impact motion, such as initial gap, location and stiffness of the 

barrier aiming to increase the frequency bandwidth are investigated. Both analytical method of 

perturbation and numerical method of ode45 Matlab are implemented.  

 

 

1. Introduction 

 

 

In recent years, by extending new technologies, the importance of supplying low power consumption 

devices such as wireless sensors has become more obvious[1], [2]. These devices, need to be 
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empowered in the range of micro watt depending on their applications such as health monitoring. 

Converting ambient vibration or waste energies into electrical energy is the main subject of this field of 

study[3]–[5]. In particular, vibration energy harvesters has attracted many attentions, because ambient 

vibration sources are a long-lasting and ubiquitous source of energy that exist in the natural environment 

amply. Various methods such as, electromagnetic, electrostatic and piezoelectric transducers are 

implemented to convert vibration energies into electrical energies[6], [7]. Piezoelectric materials are one 

of the most effective ways of energy harvesting and supplying power to micro electrical component.  

Exploiting a cantilever beam equipped to a piezoelectric layer as a vibration energy harvester has been 

found a lot of attention, because of simplicity in manufacturing and showing high level of performance[8]. 

Due to inherent mechanical properties, linear vibration energy harvester (VEH) shows good efficacy in 

generating power only in a narrow working frequency bandwidth. So VEH produces maximum power if 

its oscillator works in resonant state. Such VEHs need some manipulation to make them suitable for 

harvesting energies from natural environment[7], [9]. To dominate this problem, various techniques are 

used to widening the working frequency bandwidth of a VEH. One of the most important method for 

increasing the efficiency of a VEH is adding nonlinearity to the system. This nonlinearity can be added 

by using bistability with a magnetic coupling or using frequency up-conversion techniques such as vibro-

impact phenomenon[10], [11]. Typical bistable piezoelectric energy harvesters (TBPEH) are built with 

a pair of permanent magnets which are added to a piezoelectric cantilever beam. One permanent 

magnet is attached on the tip of the beam and the other one is fixed on the excitation frame. Adding a 

pair of magnets with opposed polarity to a cantilever beam energy harvester will make a bistable energy 

harvester[12]. Many researchers have focused on the TBPEH to improve the amount of harvested 

power. A. Erturk and D. Inman analyzed a piezo-magnetoelastic device for remarkable improvement of 

piezoelectric power generation in vibration energy harvesting[13]. Their proposed energy harvester 

amended the generated voltage about %200 respect to a simple energy harvester. Z. Zhou et al. worked 

on the bi-stable characteristics produced by the magnetic interaction were exploited to improve the 

performance of energy harvesting from a bridge under the excitation of moving vehicles. Their results 

showed that the BPEH can significantly improve the energy harvesting performance[14]. Non-

smoothness behavior of impact process causes sudden change in amount and direction of oscillator 

velocity[15].This process leads to including the nonlinearity to a vibro-impact system. Several papers 

investigate the effects of vibro-impact methods on performance of VEH. M. M. Soliman and his 

colleagues proposed a new design for widening the operating frequency bandwidth of a VEH utilizing a 

namely piecewise-linear oscillator, instead of traditional linear energy harvester. In fact, they introduced 

a vibro-impact energy harvester by imposing a barrier to a cantilever beam system to confine the 

vibration amplitude. They found that the new architecture increased the operating frequency bandwidth 

of the harvester, significantly[16]. Abedini et al. studied a piezoelectric cantilever energy harvester by 

using a vibro-impact mechanism to convert low ambient vibration frequency to resonant frequency of 

the energy harvester to improve its performance. They used a single degree of freedom model to 

analyze the piezoelectric cantilever beam energy harvester. According to their conclusions, the energy 

harvesting efficiency drastically improved with using the vibro-impact process[17]. K. Vijayan et al 

studied a coupled vibro-impacting beams energy harvester that was under base excitation at different 

322



3 
 

parameters[18]. They investigated the effects of contact stiffness, damping ratio and initial gap between 

beams on the generated power and frequency bandwidth of the system. They found, by appropriate 

optimization of contact stiffness impacting bodies, the VEH can generate more power rather than a 

linear system. Huicong Liu et al.[19] have examined  the operating frequency bandwidth of a 

piezoelectric energy harvester system which is equipped with two symmetric mechanical stoppers. They 

found that the operating frequency bandwidth of the system is increased about 18 Hz. 

This study represent a novel vibro-impact energy harvester by adding a stopping barrier to a typical 

bistable piezoelectric unimorph cantilever beam energy harvester. The tip beam transverse motion has 

been limited by a barrier limiting stop. Therefore, when the tip motion amplitude of the harvester 

exceeds the initial gap distance, the impact will occur. By using Euler-Lagrange equations, the 

governing equations of motion are derived. Finally, the working frequency bandwidth of the considered 

system will be investigated by solving the governing equations both with perturbation methods and 

numerically with Matlab ode45 function. The rest of this paper is organized as follows. In section. 2 the 

mechanical and electromechanical parameters and governing equations of the vibro-impact bistable 

energy harvester are introduced. Then the effects of vibro-impact phenomenon on the working 

frequency bandwidth and the amount of extracted power of the proposed harvester are analyzed in 

section. 3. Finally, in section. 4 the conclusions of the results are discussed. 

 

2. Mathematical modeling 

In present research a vibro-impact bistable energy harvester is considered. Figure. 1 illustrates the 

schematic of the proposed unimorph vibro-impact cantilever beam energy harvester. 

 

Fig. 1 

The system is composed of a pair of permanent magnets, a limiting stop barrier and an electrical load 

𝑅𝐿 using to extract the generated power. The permanent magnets are deployed with same polarity and 

placed facing each other. One of them is attached to the free end of the beam as tip mass to reduce 

the natural frequency of the harvester and the other one is fixed on the harvester frame. The system 

has been excited by harmonic base motion. The barrier is modeled as a linear spring. The considered 

energy harvester is driven by external harmonic base excitation known as �̈�𝑏(𝑡) = 𝑌0𝑐𝑜𝑠(𝜔𝑡) which 

𝑌0 and 𝜔 are acceleration amplitude and frequency, respectively. The initial gap between piezoelectric 

beam and limiting stop is considered by ∆. In the following section, the governing equation of motion is 
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be derived by extended general Hamilton theory and Euler-Bernoulli assumption. The total kinetic 

energy of the system is, 

𝑇𝑡𝑜𝑡 =
1

2
𝜌𝑠𝐴𝑠 ∫ [

𝜕𝑤0(𝑥,𝑡)

𝜕𝑡
]2𝑑𝑥

𝐿𝑠

0
+

1

2
𝜌𝑝𝐴𝑝 ∫ [

𝜕𝑤0(𝑥,𝑡)

𝜕𝑡
]2𝑑𝑥

𝐿𝑝

0
+

1

2
𝑀𝑡[

𝜕𝑤0(𝐿𝑠,𝑡)

𝜕𝑡
]2                                                    (1) 

Where 𝜌𝑠, 𝜌𝑝 are mass density, 𝐴𝑠, 𝐴𝑝 are cross-section area and 𝐿𝑠, 𝐿𝑝 are length of substrate and 

piezoelectric layers respectively. The cross-sectional area of the substrate and piezoelectric harvester 

is defined as, 

𝐴𝑠 = 𝑏ℎ𝑠                                                                                                                                                  (2) 

𝐴𝑝 = 𝑏ℎ𝑝                                                                                                                                                 (3) 

Where 𝑏 is the width of the harvester and ℎ𝑠, ℎ𝑝 is the thickness of the substrate and piezoelectric layer 

respectively. Also, 𝑀𝑡 is considered as permanent magnet tip mass and 𝑤0 is the relative displacement 

of the transverse motion of the neutral axis of harvester relative to the base motion. Now, the total 

potential energies of the harvester in non-impacting phase will be presented. 

𝑈𝑡𝑜𝑡 = 𝑈𝑠𝑡 + 𝑈𝑒𝑚 + 𝑈𝑒𝑙 + 𝑈𝑚𝑎𝑔 + 𝑈𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛                                                                                              (4) 

 The total potential energy of the harvester is composed of structural, electromechanical, electrical 

potential energy, magnetic potential energy and potential energy of impact, respectively as follows, 

𝑈𝑠𝑡 =
1

2
𝐸𝑠𝐼𝑠 ∫ (

𝜕2𝑤0(𝑥,𝑡)

𝜕𝑥2 )2𝑑𝑥
𝐿𝑠

0
+

1

2
𝐶11

𝐸 𝐼𝑝 ∫ (
𝜕2𝑤0(𝑥,𝑡)

𝜕𝑥2 )2𝑑𝑥
𝐿𝑝

0
                                                                           (5) 

𝑈𝑒𝑚 = −
𝑒31�̅�𝑏𝐴𝑝𝑣(𝑡)

ℎ𝑝
∫

𝜕2𝑤0(𝑥,𝑡)

𝜕𝑥2 𝑑𝑥
𝐿𝑝

0
                                                                                                           (6) 

𝑈𝑒𝑙 = −
𝐴𝑝𝐿𝑝𝜀33

𝑠

2ℎ𝑝
2 𝑣(𝑡)2                                                                                                                                 (7) 

Where 𝐸𝑠, 𝐶11
𝐸  and 𝐼𝑠, 𝐼𝑝 are Young’s modulus and second moment of area of substrate and piezoelectric 

layer about cross section neutral axis (�̅�𝑏) of harvester, respectively. In addition, 𝑒31, 𝑣(𝑡) and 𝜀33
𝑠 , 

represent piezoelectric constant, permittivity constant and the generated voltage of piezoelectric layer. 

In electromechanical references, the term 
𝐴𝑝𝐿𝑝𝜀33

𝑠

ℎ𝑝
2  in Eq. 7 is known as piezoelectric capacitance and 

in this work is represented by 𝐶𝑝. As was said before, the limiting stop is modeled as a linear spring that 

is included if the amplitude of motion of the energy harvester is exceeds than the initial gap distance. If 

it does, the potential energy of the impact is, 

𝑈𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 =
1

2
𝐾0(𝑤0(𝑥𝑖 , 𝑡) − Δ)2𝐻(𝑤0(𝑥𝑖 , 𝑡) − 𝛥)                                                                                         (8) 

Which 𝐻(𝑤0(𝑥𝑖 , 𝑡) − 𝛥) is Heaviside function and 𝑥𝑖 is the location of the barrier. By considering a single 

mode assumption, the transverse motion of the harvester is, 

𝑤0(𝑥, 𝑡) = 𝜙(𝑥)𝜂(𝑡)                                                                                                                                 (9) 

Which 𝜙(𝑥) and 𝜂(𝑡) are fundamental mode shape and generalized coordinate, respectively. Based on 

assumed mode approximation, the first mode shape function for this of harvester is, 

𝜙(𝑥) = 1 − cos (
𝜋𝑥

2𝐿𝑠
)                                                                                                                              (10) 

Now, the electromagnetic potential energy is derived by dipole theory. 

So, the magnetic dipole moment vectors of installed permanent magnets �⃗⃗⃗� 𝑨 and �⃗⃗⃗� 𝑩 which are oriented 

as Fig. 1 are written as, 

�⃗⃗⃗� 𝑨 = 𝑀𝐴𝑉𝐴 cos(𝛼) 𝒆�̂� + 𝑀𝐴𝑉𝐴 sin(𝛼) 𝒆�̂�                                                                                                 (11)                                                                                         
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�⃗⃗⃗� 𝑩 = −𝑀𝐵𝑉𝐵 cos(𝛼) 𝒆�̂�                                                                                                                         (12) 

𝑀𝐴, 𝑀𝐵 and 𝑉𝐴, 𝑉𝐵 represent magnetization vectors and volumes of magnet A and B, respectively. 

Beside, 𝑀 =
𝐵𝑟

𝜇0
⁄ , which 𝐵𝑟 and 𝜇0 are considered as magnet’s residual flux density and permeability 

of free space, respectively. According to Fig. 1, "𝛼" is the slope of the beam tip and is considered equal 

to tan−1(𝑤0́ (𝐿𝑠, 𝑡)) which, “´” represents special derivative. According to Fig. 1, the distance vector 

between magnets is presented as �⃗� 𝑨𝑩. The vector �⃗� 𝑨𝑩 is defined as follows, 

�⃗� 𝑨𝑩 = 𝑑 𝒆�̂� − 𝑤0(𝐿𝑠, 𝑡)𝒆�̂�                                                                                                                        (13) 

Which "𝑑" is the separation distance between two magnets. The magnetic potential energy of the 

harvester can be written as, 

𝑈𝑚𝑎𝑔 =
𝜇0

4𝜋
[

�⃗⃗⃗� 𝑨

‖�⃗� 𝑨𝑩‖3 −
3�⃗� 𝑨𝑩(�⃗⃗⃗� 𝑨∙�⃗� 𝑨𝑩)

‖�⃗� 𝑨𝑩‖5 ] ∙ �⃗⃗⃗� 𝑩                                                                                                     (14) 

With substitution of Eq. 9-10 in Eq.14 the magnetic potential energy is obtained. According to extended 

Hamilton principle, the governing electromechanical motion for one mode approximation will be, 

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑖
) −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑈

𝜕𝑞𝑖
−

𝜕𝑊𝑖𝑒

𝜕𝑞𝑖
= 𝑄𝑖                                     𝑖 = 1,2                                                               (15) 

Which 𝑄𝑖 are related to non-conservative work of the system that is done by generated electrical 

charges. Finally, by non-dimensional techniques, the final equations of the motion are, 

𝑑2𝑋

𝑑𝜏2 + 2𝜖𝜁
𝑑𝑋

𝑑𝜏
+ 𝛾2𝑋 + 𝜖𝛼3𝑋

3 − 𝜖𝑉 = 𝜖𝑓𝑐𝑜𝑠(Ω𝜏)                                                                                     (16) 

𝑑𝑉

𝑑𝜏
+ 𝜅2 𝑑𝑋

𝑑𝜏
+ 𝜈𝑉 = 0                                                                                                                               (17) 

Which the dimensionless parameters are listed as, 

  𝜂(𝑡) = 𝐿0𝑋(𝜏), 𝜏 = 𝜔𝑛𝑡, 𝜔𝑛
2 =

𝐾

𝑀
 , 𝛾2 = 1 + 𝛼1 + 𝛼2, 𝜅2 =

𝜃2

𝐶𝑝𝐾
, 𝜈 =

1

𝐶𝑝𝜔𝑛𝑅
, 𝑣(𝑡) =

𝐾𝐿0

𝜃
𝑉(𝜏),  

𝐾 = 𝐸𝑠𝐼𝑠 ∫ �́́�2𝑑𝑥
𝐿𝑠

0
+𝐶11

𝐸 𝐼𝑝 ∫ �́́�2𝑑𝑥
𝐿𝑝

0
, 𝑀 = 𝜌𝑠𝐴𝑠 ∫ 𝜙(𝑥)2𝑑𝑥 + 𝜌𝑝𝐴𝑝 ∫ 𝜙(𝑥)2𝑑𝑥 + 𝑀𝑡𝜙(𝐿𝑠)

2𝐿𝑝

0

𝐿𝑠

0
, 𝛺 =

𝜔

𝜔𝑛
 

𝛼1 is activate when impact occurs and 𝛼2, 𝛼3 are coming from potential energy of magnets. 𝛼2, 𝛼3 are 

obtained from applying McLaren series to result of Eq.14. with the aid of Maple software. 

 

2.1 Analytical solution based on perturbation techniques 

In this section, the analytical solution of the Eq. 16-17 is presented based on multiple scale perturbation 

techniques. The solution is derived in primary resonance around 𝜔𝑛. In order to solve the equations 

time scale is defined as, 

𝑇0 = 𝜏, 𝑇1 = 𝜖𝜏                                                                                                                                     (18) 

And response expressions are, 

𝑋(𝜏; 𝜖) = 𝑋0(𝑇0, 𝑇1) + 𝜖𝑋1(𝑇0, 𝑇1)                                                                                                           (19) 

𝑉(𝜏; 𝜖) = 𝑉0(𝑇0, 𝑇1) + 𝜖𝑉1(𝑇0, 𝑇1)                                                                                                            (20) 

The derivative operators respect to time scales are, 

𝑑

𝑑𝜏
= 𝐷0 + 𝜖𝐷1                                                                                                                                         (21) 

𝑑2

𝑑𝜏2 = 𝐷0
2 + 2𝜖𝐷0𝐷1                                                                                                                                (22) 

After substitution of Eq.18-22 in Eq. 16-17 and equate the coefficient of 𝜖0 and 𝜖, 

𝐷0
2𝑋0 + 𝛾2𝑋0 = 0                                                                                                                                  (23) 
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𝐷0𝑉0 + 1 = −𝜅2𝐷0𝑋0                                                                                                                             (24) 

and 

𝐷0
2𝑋1 + 𝛾2𝑋1 = −2𝐷0𝐷1𝑋0 − 2𝜁𝐷0𝑋0 − 𝛼3𝑋0

3 + 𝑉0 + 𝑓𝑐𝑜𝑠(𝜔𝑛𝑇0 + 𝜎𝑇1)                                                (25) 

𝐷1𝑉1 + 𝑉1 = −𝐷1𝑉0 − 𝜅2(𝐷0𝑋1 + 𝐷1𝑋0)                                                                                                  (26) 

From … the  𝑋0 and 𝑉0 are, 

𝑋0 = 𝐴(𝑇1)𝑒
𝑖𝛾𝑇0 + 𝐶𝐶                                                                                                                           (27) 

𝑉0 = 𝐵(𝑇1)𝑒
−𝜈𝑇0 −

𝑖𝛾𝜅2𝐴(𝑇1)𝑒𝑖𝛾𝑇0

1+𝑖𝛾
+ 𝐶𝐶                                                                                                    (28) 

𝑖 = √−1 

Where CC refers to complex conjugate of previous terms. By substitution of Eq. 27-28 in Eq.25-26 with 

eliminating secular terms, and after some manipulations in Maple software the unknown function 𝐴(𝑇1) 

and 𝐵(𝑇1) are found. Then the final results of the Eq. 16-17 will be obtained. In the following section, 

the effect of initial gap distance and barrier stiffness is analyzed both numerically and analytically. After 

finding the voltage expression, one can find the extracted power as, 

𝑃𝑒𝑥 =
𝑣2

𝑅𝐿
                                                                                                                                                (29) 

And finally the average extracted power is, 

𝑃𝑎𝑣𝑒 =
1

𝑡
∫

𝑣2

𝑅𝐿

𝑡

0
𝑑𝑡                                                                                                                                     (30) 

For optimization process, it is enough to take derivative of Eq. 30 respect to stiffness barrier and initial 

gap as follows, 

𝐾0(𝑜𝑝𝑡) =
𝜕𝑃𝑎𝑣𝑒

𝜕𝐾0
= 0                                                                                                                                (31) 

∆𝑜𝑝𝑡=
𝜕𝑃𝑎𝑣𝑒

𝜕∆
= 0                                                                                                                                                                       (32) 

All of the mathematical calculations is done in Maple software. 

 

3. Results  

This section investigates the numerical results of the proposed energy harvester. The physical 

parameters of the considered energy harvester of Fig. 1(a) are presented in the Table. 1. 

Beam properties and symbol value Unit 

Length (𝑳𝒔) 55.15 𝑚𝑚 

Density (𝝆𝒔) 7900 
𝐾𝑔

𝑚3⁄  

Young’s Modulus (𝑬𝒔) 92 𝐺𝑃𝑎 

Thickness (𝒉𝒔) 0.2 𝑚𝑚 

Width (𝒃) 10 𝑚𝑚 

Damping ratio (𝜻) 0.02 - 

Barrier initial gap (𝚫) 4 𝑚𝑚 

Barrier stiffness (𝑲𝟎) 13000 𝑁
𝑚⁄  

Base acceleration magnitude 

(𝒀𝟎) 
1g 

𝑚
𝑠2⁄  
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Gravity acceleration (g) 9.81 
𝑚

𝑠2⁄  

Barrier location (𝒙𝒊) 45 𝑚𝑚 

Piezoelectric properties   

Length (𝑳𝒑) 36 𝑚𝑚 

Density (𝝆𝒑) 7600 
𝐾𝑔

𝑚3⁄  

Young’s Modulus (𝑪𝟏𝟏
𝑬 ) 62 𝐺𝑃𝑎 

thickness (𝒉𝒑) 0.25 𝑚𝑚 

Width (𝒃) 10 𝑚𝑚 

Piezoelectric constant (𝒆𝟑𝟏) -21.08 𝐶
𝑚2⁄  

Permittivity constant (𝜺𝟑𝟑
𝒔 ) 44.27 𝑛𝐹

𝑚⁄  

Electrical load (𝑹𝑳) 5000 Ω 

Magnet properties   

Separation distance (𝒅) 24 𝑚𝑚 

Magnets volume (𝑽𝑨, 𝑽𝑩) 360 𝑚𝑚3 

Magnet mass (𝑴𝒕) 4.5 𝑔𝑟 

Residual flux density (𝑩𝒓) 1.25 𝑇 

Permeability of free space (𝝁𝟎) 4𝜋 × 10−7 𝑁
𝐴2⁄  

 

The harvester is driven by base acceleration that is defined as �̈�(𝑡) = 𝑌0𝑐𝑜𝑠(𝜔𝑡), which 𝑌0 is the 

amplitude of the base acceleration and 𝜔 = 2𝜋𝑓 is the external excitation frequency in which 𝑓 varies 

from 0 up to 100 Hz. These plots are obtained while all transient results have passed. Fig. 2(a) illustrates 

the maximum minis minimum motion amplitude of the system in every period of external excitation at 

the absence of the limiting stop. Both analytical results and numerical results have a good consistency. 

According to Fig. 2a the operating frequency bandwidth in non-impacting motion is about 1-24.9 Hz. In 

Fig. 2b, after 24.9 Hz, the amount of produced voltage has been dropped drastically. According to Fig. 

2c the generated power has a significant value until frequency 24.9 Hz. The maximum average power 

is about 15 Watt which occurred at 18.07 Hz. This value belongs to first natural frequency of the non-

impacting system. 
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a 

 

b 

 

c 
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Fig. 2. Frequency response diagram of the bistable unimorph piezoelectric energy harvester without impact 

 

Fig. 3 shows the frequency response diagram of the harvester in impacting motion. According to the 

obtained results, the operating frequency bandwidth of the system is until 41.97 Hz. In impacting motion, 

the maximum average power is about 31 Watt. After the frequency 41.97 Hz, the amount of harvested 

power plummet drastically. So the operating frequency bandwidth in non-impacting motion is about 1-

41.97 Hz 

 

a 

 

b 
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c 

Fig. 3. Frequency response diagram of the vibro-impact bistable unimorph piezoelectric energy harvester 

 

Fig. 4 represent the effect of stiffness barrier to the harvested power. According to Fig. 4 by increasing 

the barrier stiffness, the average of the harvested power decreased. So the best stiffness barrier option 

for optimizing the harvested power is the minimum one. But in future works it is demonstrated that 

decreasing the barrier stiffness will result in obtaining less operating frequency bandwidth. 

 

Fig. 4. Effect of barrier stiffness on level of harvested power at 18.3 Hz 

 

Fig. 5 shows the effect of initial gap of the barrier on the frequency bandwidth and the harvested power 

of the system. As can be seen, by increasing the initial gap, amount of extracted power has increased 

noticeably. But after about the gap value of 3.3mm the maximum harvested power is obtained. This 

value is the gazing gap value that the harvester just touched the barrier. 
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Fig. 5 effect of gap barrier on harvested power at 18.3 Hz 

 

 

4. Conclusion 

This work, present a novel vibro-impact energy harvester by adding a stopping barrier to a typical 

bistable piezoelectric unimorph cantilever beam for increasing the frequency bandwidth and the level 

of harvested power of the system. The operating frequency bandwidth and extracted power of the 

bistable energy harvester was examined in non-impacting and impacting motions via frequency 

response diagrams. It was shown that the impact phenomenon increases the working frequency 

bandwidth of the bistable harvesting system about 68.5 percent. Besides, the amount of harvested 

power is increased about 100.6 percent. According to the results, by increasing the barrier stiffness, the 

average of the harvested power decreased. Then, the optimum values of stiffness barrier and initial gap 

value is gained. As was shown, after about the gap value of 3.3mm the maximum harvested power is 

obtained. This value is the gazing gap value that the harvester just touched the barrier. This results can 

be used to simulate an optimum vibro-impact energy harvester. 
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ABSTRACT 

The vibration of a structure during an earthquake results from waves travelling through the soil from 
the source of the earthquake that reach the foundation of the structure and propagate through the 
structure. These waves can propagate in different directions, causing different structural responses. A 
critical aspect of these propagating waves is the travel time it takes a wave to go from one part of the 
structure (or the vicinity of the structure) to another part of the structure. In this paper, a waveform-
based technique is introduced, which permits extracting the predominant frequency of ground motion 
propagating through the structure and could also potentially be used for damage estimation due to severe 
ground shaking. This technique is referred to as the “C method” and was originally introduced in Japan 
by Y. Nakamura in 2017. This method uses the measured vibration at roof level to estimate the dominant 
frequency of motions from the wave travel time throughout the structure by minimizing the difference 
between measured and estimated signal values at specific points. The validity of this output-only 
method is determined by comparing the results of frequencies obtained from actual recorded data in 
instrumented buildings during an earthquake. A case study using the data from a fifty two-story 
instrumented building in California was obtained during the 1994 Northridge Earthquake. The results 
of this study indicate the predominant frequencies that control the response of the building during the 
earthquake and can be used to estimate the damage potential of the waves propagating throughout the 
structure. 

 Keywords: Wave propagation, Structural health monitoring, Earthquake 
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1. INTRODUCTION 

Earthquakes are one of the most catastrophic natural disasters, causing devastating effects, such as 
fatalities and massive loss of property. When earthquakes happen, the elastic energy accumulated in 
faults becomes released in waves that travel through the crust of the earth and result in the shaking of 
structures (Villaverde, 2009). From an engineering point of view, the destructive potential of 
earthquakes can be increased by design faults, poor material and construction quality, or a lack of proper 
maintenance of structures. Therefore, it proves necessary to regularly assess and monitor the health 
condition of structures. 

When damage happens in a structure, its physical properties change, consequently altering its dynamic 
characteristics – such as frequency, damping ratio and mode shapes. During the last decades, several 
methods have been developed for identifying dynamic characteristics from the seismic response of 
structures. Some of the developed methods are categorized as output-only, meaning that they do not 
require the record of input excitation (Ghahari et al., 2013). These methods are of remarkable interest 
in civil engineering, for which the input excitation of structures might be unavailable. 

Once a vibration or an excitation occurs in any medium, like soil, rock, or any other material, it will not 
be immediately felt within the entire space. In other words, it takes time for those waves to travel from 
the source point, where the disturbance has originated, to another point in the medium. To interpret the 
characteristics of earthquake waves carried through the media, d'Alembert developed the one-
dimensional wave equation, describing the velocity of the media as a parameter relating the time and 
space domains (Tipler, 2003). Thereafter, some other researchers also conducted various studies to 
estimate the wave propagation velocity (Barkat et al., 2020; Clavero et al., 2014; Ikuta et al., 2002; Zhu 
& Harris, 2015).  

Nakamura recently proposed an efficient method based on wave travel time that can be applied for the 
evaluation of the degradation in structures in a real-time manner (Nakamura et al., 2019). The suggested 
method, called the CERS method, includes a set of four methods – C, E, R, and S. The C technique can 
compute the wave propagation time and damping between a free end and a point in the medium in real-
time, assuming a one-dimensional wave field. The E method can do the same between a free field and 
the reflecting plane. Furthermore, the R and S approaches can typically determine the time difference 
of waveforms between two spatially distant locations in real-time using the maximum cross-correlation 
and the minimal simple error, respectively.  

The CERS method can also be applied in structures to detect the change of wave velocity, as well as 
damping and dynamic characteristics of buildings during vibrations (Nakamura et al., 2020). In 2020, 
the results of the method were validated using the Kalman filter technique and the recorded seismic 
responses of the Research Building in Tohoku (Nakamura, 2020). The travel time concept of the 
methods is calculated upon the waveform synthesis and cross-correlation between waveforms in two 
points of structures.  

A fifty two-story office building in Los Angeles, California is one of the stations that has experienced 
more than ten strong earthquakes. Since 1989 seismic records from this building are available from the 
Center for Engineering Strong Motion Database (CESMD) (Center for Engineering Strong Motion 
Data, n.d.). The researchers have studied this building to calculate the dynamic characteristics of the 
structure. Ventura has calibrated the computer model of the structure to estimate the linear and nonlinear 
response of 3-D model during severe earthquakes(Ventura & Ding, 2000). Farahani et al. have 
identified the wave velocity variation of waveforms propagating vertically through the structure. By 
using the wave inversion algorithm, they were able to detect permanent stiffness changes of the structure 
during the severe shaking (Rahmani & Todorovska, 2015). Both studies reported no building damage 
has been observed.  

The building is used as a case study to illustrate how the CERS method works. At first, the method is 
implemented and verified with the results of the recorded data of the research building of Tohoku 
University. Then, it is applied to vibrations observed on different floors of the Los Angeles steel-frame 
building excited by the Northridge earthquake. 
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The rest of the paper is organized as follows. A detailed outline of the C method and formulations are 
provided in Section 2. The validation of the method and obtained numerical results are presented in 
Section 3. Finally, the concluding remarks are included in Section 4. 

2. DESCRIPTION OF THE C METHOD 

In this section, the formulations of the C method are presented. The method calculates wave propagation 
time between two points in a medium – a free endpoint and another point inside the medium – using 
the observed waveforms at those points. The E method can also calculate the time propagates between 
a free field and reflecting plane. The R and S methods can generally calculate the time difference of 
waveforms between two points separated spatially based on the maximum cross-correlation basis and 
minimum simple error basis (Nakamura, 2020). Considering the available data from the case study, the 
goal of the paper is to calculate the changes in travel time measured between two points using the C 
method.  

The vibration of a point in the surface layer is assumed as a sum of upward and downward waves. 
Therefore, the observed waveform in the ground at a distance 𝑥𝑥 from the free end is expressed as: 

𝐺𝐺(𝑥𝑥, 𝑡𝑡) =
𝑇𝑇 �𝑡𝑡 + 𝑥𝑥

𝑉𝑉�+ 𝑇𝑇 �𝑡𝑡 − 𝑥𝑥
𝑉𝑉�

2
 (1)  

where 𝑇𝑇 is the observed waveform at an endpoint; 𝑉𝑉 stands for the distribution velocity; and 𝑥𝑥
𝑉𝑉
 shows 

the travel time. As defined in Eq. (2), based on Nakamura’s method, the travel time is estimated as the 
product of a constant value (𝑘𝑘) and the sampling rate (∆𝑡𝑡). The unknown value 𝑘𝑘 varies through the 
time.  

𝑥𝑥
𝑉𝑉

= 𝑘𝑘.∆𝑡𝑡 (2)  

By substituting the Eq. (2) in Eq. (1), the waveform 𝐺𝐺 is reformulated as Eq. (3): 

𝐺𝐺(𝑥𝑥, 𝑡𝑡) =
𝑇𝑇(𝑡𝑡 + 𝑘𝑘.∆𝑡𝑡) + 𝑇𝑇(𝑡𝑡 − 𝑘𝑘.∆𝑡𝑡)

2
 (3)  

When 𝑡𝑡 = 𝑗𝑗.∆𝑡𝑡, the estimated waveform at another point, with a distance of 𝑦𝑦 from the free end, is 
expressed as Eq. (4): 

𝐻𝐻(𝑦𝑦, 𝑗𝑗) =
𝑇𝑇 �𝑗𝑗.∆𝑡𝑡 + 𝑦𝑦

𝑉𝑉� + 𝑇𝑇 �𝑗𝑗.∆𝑡𝑡 − 𝑦𝑦
𝑉𝑉�

2
 (4)  

In Eq. (5), the distance 𝑦𝑦 is defined as 𝑦𝑦 = 𝑖𝑖.∆𝑡𝑡.𝑉𝑉, where 𝑖𝑖 is a counter, expressing the time lag in terms 
of the sampling time interval ∆𝑡𝑡. Hence, Eq. (4) can be represented as:  

𝐻𝐻(𝑖𝑖, 𝑗𝑗) =
𝑇𝑇(𝑗𝑗.∆𝑡𝑡 + 𝑖𝑖.∆𝑡𝑡) + 𝑇𝑇(𝑗𝑗.∆𝑡𝑡 − 𝑖𝑖.∆𝑡𝑡)

2
=
𝑇𝑇((𝑗𝑗 + 𝑖𝑖)∆𝑡𝑡) + 𝑇𝑇((𝑗𝑗 − 𝑖𝑖)∆𝑡𝑡)

2
 (5)  

The error function is defined as the square of the difference between the estimated and the observed 
waveforms as below: 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖, 𝑗𝑗) = [𝐻𝐻(𝑖𝑖, 𝑗𝑗) − 𝐺𝐺(𝑥𝑥, 𝑡𝑡)]2 (6)  

The value of 𝑖𝑖 can be derived through an optimization problem through which the error for each 𝑗𝑗 
changing in time is minimized, as shown in Eq. (7). 
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𝐸𝐸𝐸𝐸𝐸𝐸(𝑗𝑗) = 𝑚𝑚𝑖𝑖𝑚𝑚[𝐸𝐸𝐸𝐸𝐸𝐸(𝑖𝑖, 𝑗𝑗)] (7)  

Thus, it is possible to estimate the travel time based on the sampling time interval. When 𝑦𝑦 = 𝑥𝑥, the 
estimated waveform complies with the observed one, leading to the fact that by considering 𝑖𝑖 equal to 
𝑘𝑘 (i.e., 𝑖𝑖 = 𝑘𝑘), the error for each time step is minimized.  

According to Nakamura’s article (Nakamura, 2020) ,applying the C method, the predominant frequency 
is derived as the inverse of quadrupled travel time between two points on the wave propagation direction 
from the end face to the reflecting plane. 

𝑓𝑓 =
𝑉𝑉

4𝐻𝐻
=

1

4𝐻𝐻𝑉𝑉
=

1
4�̂�𝑡

 (8)  

where the parameter 𝐻𝐻 is the wave travel distance and equals the height of the structure and �̂�𝑡 is the the 
value discribing thhe time travel between two points. 

3. ESTIMATED RESULTS AND DISCUSSION 

In this section, the C method is used to estimate the wave propagation time between the points on the 
roof (as the point at the free end) and on the ground level (as the point inside the medium) of the Milpitas 
building. In order to check that the method works properly and accurately estimates the change in travel 
time and frequency, the code is firstly verified with the same building studied in the reference article 
(Nakamura, 2020). 

3.1. Research Building of Tohoku University 

In this subsection, the Civil Engineering and Architecture Research Building of Tohoku University is 
studied, and the waveforms belong to the Pacific coast of the Tohoku Earthquake in 2011. Figure 1 
shows photo of the THU building, its vertical cross section, and plans of the instrumented levels. 
According to the figure 1, the east-west (EW) and north-south (NS) directions refer to the longitudinal 
and transverse orientations. The responses are recorded on the 9th and 1st floor of the building and are 
averaged by exponential smoothing, setting the half-life period of 5 seconds (Nishiyama et al., 2011). 

 

  
Figure 1: overview of the THU building with sensor locations(Motosaka et al., 2012) 

  The measurement on the 9th floor (U9) is considered as a measurement point at the free end, and U1 
recorded on the 1st floor is assumed as a measurement point in the medium. Following Eq. (4), the 
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waveform on the 1st floor is obtained by averaging the upward and downward waveforms on the 9th 
floor. 

To better capture the difference, the seismic responses between the time 80 and 100 seconds of the 
observed and estimated waveforms on the first floor are represented in Figure 2. In the selected 20-
second interval, there is a jump in the acceleration amplitude, and the numerical method should be 
robust enough to estimate the response with a minor error. As can be seen, there is a negligible error 
between the estimated and the observed acceleration.  

 
(a) 

 
(b) 

Figure 2: comparison between the observed and estimated waveform one at the first floor in both directions a) 
whole time history, and  b) partial portion of the record (from 80 sec to 100 sec) 

Figure 3 illustrates the comparioson of travel times versus time from Nakamura's article - colourful 
curves - as well as our obtained time travel - drawn in black and named as P. As can be seen, the 
obtained travel time using our codes fits well with those of(Nakamura, 2020). By applying a smoothing 
filter, such as a moving average, the results can closely align with those from the resource.  

  

(a) (b) 
Figure 3: Comparison between the travel times estimated by Nakamura and the programmed Matlab code in a) 

transverse direction  b)longitudinal direction 
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Since the result of the method agrees well with the result of ref. (Nakamura, 2020), it confirms that the 
implementation of the method was performed correctly and can be employed for other structures.  

According to Figure 3, it is also evident that the structure has faced two major shocks. The primary 
shock has happened at around 40 second, and the secondary shock has occured at around 80 seconds. 
Interestingly, the travel time has considerably shifted around these times. For instance, in Figure 2 (a), 
the travel time was around 16∆𝑡𝑡 (∆𝑡𝑡 = 1

100
𝑠𝑠𝑠𝑠𝑠𝑠) at the beginning of the waveform, and after the first 

shock, it reached about 22∆𝑡𝑡. After experiencing the second shock, the travel time converged to 30∆𝑡𝑡. 
In the longitudinal direction, shown in Figure 2 (b), the first shock gradually shifted the travel time from 
15∆𝑡𝑡 to 25∆𝑡𝑡, but the second one did not change the time lag. Nakamura and Mostaka seperately 
concluded that the structure has faced higher damage in the transverse-direction compared to the 
longitudinal-direction(Motosaka et al., 2012).  

The predominant frequency derived from the C method is assumed as the fourfold increase in the travel 
time. Figure 4 illustrates the time history of the predominant frequency during the Tohoku Earthquake. 
The fluctuation in the NS-direction is much more evident than in the other direction. Similar jumps 
corresponding to the shocks can be observed in the NS-direction at 40 secs and 80 secs in Figure 4. 

 
Figure 4: The estimated predominant frequency of Tohoku University in both directions 

3.2. Los Angeles office Building  

The structure studied in this section is the 52-story steel frame building shown in Figure 5. It is located 
in the City of Los Angeles, California, and was designed in 1988, constructed in 1988-90 and 
instrumented by the California Strong Motion Instrumentation Program (CSMIP) in 1990. The 
structureis the concentrically braced steel frames at the core with outrigger moment frames in both 
directions. The vertical load carrying system is concrete slabs on steel deck supported by steel frames.To 
improve the performance of the  high rise buiding due to wind forces, the tip of every corner is clipped 
and the middle third of each side is notched. The foundation is concrete spread fittings founded on site 
class D Alluvium over rock. The building uses a total of 20 accelerometers on 7 levels to measure 
seismic motions.(Center for Engineering Strong Motion Data(CESMD), n.d.) The figure below 
summarizes the locations of the accelerometers in the building. 
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(a) (b) 

Figure 5: The 52-storey building a) view(777 Tower | Los Angeles Conservancy, n.d.) b) plan with sensor 
locations (Center for Engineering Strong Motion Data (CESMD), n.d.) 

 

In this study, the Northridge earthquake with the magnitude of 6.4 and the epicenter depth of 
approximately 30 km from the building is considered. According to the C method, two measurement 
points along the vertical line are selected to present 1D wave propagation. Seismic acceleration 
responses of the roof of the structure recorded via sensor channels 20 and 19 during the Northridge 
earthquake were used as the observed waveforms at the endpoint for the N-S and E-W directions, 
respectively. Similarly, data from channels 6 and 5 of the “A” level of the building were used as the 
observed waveforms in the medium. Figure 6 shows the time history record data with a sampling rate 
of 100 samples per second on the “A level” floor, corresponding to Ground level, and roof of the 
building recorded in N-S and E-W directions. 

 
 

  

(a) (b) 
Figure 6: The acceleration response of the Los Angeles building on roof and “A” level a) N-S direction b) E-W 

direction 
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The waveform at ground level is estimated from the waveform observed at roof level using the C 
method. The results of the estimated waveform as well as the observed response are presented in the 
Figure 7.  The input data were averaged by using the moving average filter with half period of 2 seconds. 

 
(a) 

  
(b) 

Figure 7: The comparison between the observed waveform and estimated one applying the C method to the 
observed waveform at roof level in both directions a) whole time history b) partial part of time history (from 10 

sec to 20 sec) 

Figure 7 presents the ground-level waveform estimated from the observed data at roof level and 
compared with the corresponding observed record on the ground floor. In other words, both observed 
and estimated waveforms agree well which indicates this method has successfully find the optimum 
travel time value at each time steps. Figure 7 compares the travel time change derived from the study 
method for north-south and east-west directions. As can be seen in Fig. 8, the travel time was around 
200∆𝑡𝑡 (∆𝑡𝑡 = 1/100 seconds).  The oscillation of the travel time is tangible, which reports no damages 
occured in the structure. 

 
Figure 8: The estimated traveltime of the building in N-S and E-W directions 
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The natural frequency of the steel frame building is estimated from the inverse of the time of wave propagating 
between two points. As shown in figure 9, the fundamental natural frequency with the value of 0.16 Hz remains 
constant within the structure. The frequency results demonstrate the same value in the other direction. Ventura 
has reported the dominant period of 6.06 seconds, corresponding to 0.165 Hz, as the first mode of vibration in the 
EW direction (Ventura & Ding, 2000). The frequency results of figure 9 show no evidence jump occurred during 
the earthquake, which confirms the previous reports related to no severe damage to the building.  

 

 
Figure 9: The Natural frequency of the building in N-S and E-W directions 

 

4. CONCLUSION  
In conclusion, this article applied the C method to extract the wave travel time by minimizing the 
differences between observed and the estimated waveforms. The frequency change of two buildings 
was examined for this research. In the first stage, the waveforms of the research building at Tohoku 
University were utilized for verifying and comparing the results of our MATLAB code with those of 
the original paper. In the second step, the 52-story Los Angeles steel frame building was used to study 
the wave propagation time between two points in the structure during the Northridge earthquake. The 
changes in the predominant frequency of the structure correlate with the shifts in travel time that does 
not occur during the shock waves and thereby indicating no damages induced in the structure. 

The method can be utilized for real-time structural health monitoring of real-world structures during 
earthquakes, but the relationship between the structural elements and the result of the method needs to 
be further studied. As a future direction of this research, the authors intend to combine the output of the 
method with the stat-of-the-art modal identification techniques to establish an accurate and efficient 
damage detection method. 
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ABSTRACT
Damage detection and damage localization constitute two pillars of Structural Health Monitoring that are
highly relevant for applications to large-scale structures. Damage detection is usually achieved through
statistical tests of data-driven residuals that monitor changes of a structure from its baseline behaviour.
Damage localization investigates changes in damage residuals with respect to parameterized structural
models through sensitivity vectors. Among the classic damage-sensitive features used for residual gen-
eration are subspace angles and principal components obtained from data spaces, whose evaluation for
a decision about damage often boils down to novelty analysis, or statistical likelihood ratio tests. Modal
parameter estimates are also employed for this purpose; however, most of the existing approaches appear
to neglect the uncertainties related to their estimation. This paper fills this gap and presents a residual
for damage detection and damage localization that is based on the difference of modal parameters ob-
tained from data collected in some baseline and some test state of the structural system. The proposed
scheme is evaluated in numerical simulations validating its robustness for damage detection and damage
localization.

Keywords: damage detection, damage localization, modal parameter estimation, Structural Health Mon-
itoring, Operational Modal Analysis

1. INTRODUCTION

Damage detection and damage localization are two pillars of vibration-based Structural Health Monitor-
ing (SHM) that are well-explored in the literature, e.g., see [1]. Among the many strategies for damage
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detection and damage localization which are model-based [2, 3], data-driven [4–8], or a combination
thereof [9], methods that appreciate the uncertainty in the estimated parameters are particularly appeal-
ing from the practical standpoint, as they account for statistical estimation errors related to noise and
short data length in the damage diagnosis problem. Such methods include statistical tests on Kalman fil-
ter innovations [10], non-parametric change detection tests based on novelty detection [11], or parametric
subspace tests [4–6].

Among the classic damage-sensitive features that are often used for the statistical tests about damage
are subspace angles and principal components obtained from data spaces. Modal parameter estimates
are also employed for this purpose; however, most of the existing approaches appear to neglect the
uncertainties related to their estimation. This paper fills this gap and presents a residual for damage
detection and damage localization that is based on the difference of modal parameters obtained from data
collected in some baseline and some test state of the structure. The statistical properties of the residual
are analyzed and are used for a statistical hypothesis test in a metric that boils down to Mahalanobis
distance. The proposed scheme is evaluated in numerical simulations validating its robustness for damage
detection and damage localization.

2. SYSTEM MODEL AND MODAL PARAMETER PROPERTIES

In this section the parametrized dynamic model for vibration data is introduced, and the statistical prop-
erties of modal parameter estimates are recalled.

2.1. System model

Let θ P Rp be a parameter vector that contains p damage-sensitive parameters of the structural elements
of interest. This parametrization is defined after the specific monitoring problem at hand, such that θ
contains parameters of the dynamic system whose sensitivity to damage is non-zero and which fully
parametrize the considered damage, e.g., Young’s modulus and density of elements, crack parameters
(width, length), among others. The vibration behavior of the monitored linear time-invariant structural
system with m degrees of freedom is described by the differential equation

Mθ:qptq ` Cθ 9qptq `Kθqptq “ fptq (1)

where t denotes continuous time, and Mθ, Cθ, Kθ P Rmˆm denote mass, damping and stiffness matrices
that respectively depend on parameter θ. Vectors qptq P Rm and fptq P Rm contain the continuous-time
displacements at the degrees of freedom (DOF) and the unmeasured external forces, respectively. Let
system (1) be observed by sensors measuring accelerations at r DOF of the structure, collected in an
output vector yptq P Rr

yptq “ D:qptq ` ṽptq, (2)

where ṽptq P Rr denotes the sensor noise and the matrix D P Rrˆm selects the acceleration output at the
measurement DOF. Sampled at a rate τ , the dynamic behavior of system (1)-(2) can be represented by a
discrete-time stochastic state-space model
#

xk`1 “ Aθxk ` wk

yk “ Cθxk ` vk
(3)

where xk P Rn are the states, and Aθ P Rnˆn, Cθ P Rrˆn P Rrˆu, are the parametrized state transition
and observation matrices estimated at a model order n. Vectors wk with vk denote the process and output
noises. The eigenfrequencies fθi , damping ratios ζθi and mode shapes ϕθi of the underlying mechanical
system are identified for i “ 1 . . . n from the i-th eigenvalue λθi and eigenvector Φθ

i of Aθ such that

fθi “
|λθci|

2π
, ζθi “

´<pλθciq
|λθci|

, ϕθi “ CθΦθ
i (4)
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where every eigenvalue of the continuous system λθci is computed with eλ
θ
ciτ “ λθi . The |p¨q| denotes the

modulus operator and <p¨q and =p¨q express the real and imaginary parts of a complex variable.

2.2. Statistical properties of modal parameter estimates

Hereafter assume that 1 . . .m available estimates of modal parameters are consistent, i.e., the estimates
converges to their true values when the data length N goes to infinity. Moreover, assume that the es-
timates of the natural frequencies and the real and the imaginary parts of the estimated mode shapes

ẑ “
“

f̂θ1 . . . f̂θm <pϕ̂θ1qT . . . <pϕ̂θmqT <pϕ̂θ1qT . . . =pϕ̂θmqT
‰T

(5)

are jointly asymptotically Gaussian, satisfying

ẑ « N
`

z, 1
NΣz

˘

,

where

z “
“

fθ1 . . . fθm <pϕθ1qT . . . <pϕθmqT =pϕθ1qT . . . =pϕθmqT
‰

, (6)

and <p¨q and =p¨q express the real and the imaginary parts of a complex variable, N pµ,Σq denotes
a Gaussian distributed variable with mean µ and covariance Σ, and Σz P Rmp2r`1qˆmp2r`1q is the
joint asymptotic covariance of the natural frequency and the mode shape estimates. Multiple system
identification methods satisfy the aforementioned criteria, e.g., stochastic subspace identification (SSI)
methods. The computation of a consistent estimate pΣz can be obtained with the statistical delta method
[12] and can be found e.g. in [13–15].

3. MODAL PARAMETER-BASED DAMAGE DETECTION AND LOCALIZATION

Based on features extracted from measurement data in the baseline (reference) and in the current test
state, the goal of damage detection is to evaluate whether there is a significant change between the
states or not. On the other hand, the overall goal of damage localization is to determine the location
of the detected damage based on an FE model of the considered structure and its vibration response
collected after the damage occurs. While the detection and the localization of damage relate to different
engineering problems, both can be scoped to monitoring changes in the system parameter θ. To analyse
such changes, the local approach framework is used [16], where the close hypotheses are formulated

H0 : θ “ θ˚ (healthy state), (7)

H1 : θ “ θ˚ ` δ{
?
N (damaged state),

where δ is an unknown change vector. A data-driven damage residual, whose design is the subject of this
work, is formulated in a way such that a small change of the (unknown) θ from its assumed nominal value
θ˚ induces a change therein. Damage detection refers then to monitoring changes in θ via monitoring
changes in the expected value of the residual. The damage localization problem boils down to a statistical
decision about which entry of θ is linked to the deviation of the residual from its nominal behaviour.

3.1. Residual definition

Let ζ̂ denote a data-driven damage diagnosis residual. In this work a residual based on the difference of
modal parameters is used; in principal, however, any data-driven and damage-sensitive Gaussian metric
can be adopted for this purpose, e.g., see [4–7]. To define the residual, let ẑref denote stacked estimates of
natural frequencies and the vectorized estimates of real and imaginary parts of the mode shapes obtained
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from data collected in some baseline state of the system, and let ẑtest be its counterpart obtained from
data collected in some currently tested system state. The modal parameter-based residual is written as

ζ̂ “
?
N

´

ẑref ´ ẑtest
¯

. (8)

The statistical distribution of the residual (8) can be approximated as Gaussian for a sufficiently large
data length N thanks to the asymptotic local approach to change detection [16]

under H0 : ζ̂
L
ÝÑ N p0,Σζq, (9)

under H1 : ζ̂
L
ÝÑ N pJ z

θ˚
δ,Σζq, (10)

where J z
θ˚
“ Bz
Bθ

ˇ

ˇ

θ“θ˚
is the sensitivity of the modal parameters w.r.t. the system parameter evaluated at

θ˚, and Σζ “ Σzref `Σztest is the residual covariance that accounts for the uncertainty of both reference
and test modal parameters. The derivative J z

θ˚
is obtained based on the FE model of the mechanical

system and is of shape

J z
θ˚
“

»

–

J f
θ

<
`

J ϕ
θ

˘

=
`

J ϕ
θ

˘

fi

fl , (11)

where

J f
θ “

»

—

–

Bf1
Bθ1

. . . Bf1
Bθp

...
...

Bfm
Bθ1

. . . Bfm
Bθp

fi

ffi

fl

ˇ

ˇ

θ“θ˚

, J ϕ
θ “

»

—

–

Bϕ1

Bθ1
. . . Bϕ1

Bθp
...

...
Bϕm
Bθ1

. . . Bϕm
Bθp

fi

ffi

fl

ˇ

ˇ

θ“θ˚

. (12)

Its computation can be performed analytically [17], or by using, e.g., a finite difference approach.

3.2. Damage detection and localization strategy

The Generalized Likelihood Ratio (GLR) test is used to decide between two distribution functions (9)-
(10), which boils down to a weighted Mahalanobis distance

t “ ζ̌T A´1ζ̌ , (13)

where ζ̌ “ Ĵ TΣ´1ζ ζ̂, A “ Ĵ TΣ´1ζ Ĵ and Ĵ is a consistent estimate of J z
θ˚

. For a decision about the
damage, the test value (13) is compared to a threshold corresponding to a quantile of the theoretical
distribution of the reference test statistics. Notice that a parameter-free version of (13) can be formulated
by assuming that J z

θ˚
is the identity matrix of appropriate size.

To locate damage, it has to be decided which entries of θ˚ possibly have changed, which boils down to
testing each j-th entry of the change parameter δ, i.e., δj “ 0 (no damage) against δj ‰ 0 (indicating
damage), which yields the test statistic [9]

tj “ ζ̌j
T
pAjq´1ζ̌j , (14)

where ζ̌ “ Ĵ T
j Σ´1ζ ζ̂, Aj “ Ĵ T

j Σ´1ζ Ĵj and Ĵj “ Ĵ z
θj˚

is a column of Ĵ z
θ˚

corresponding to the sensitivity

of the residual w.r.t. to change of the j-th parameter. The test statistics tj is asymptotically χ2 distributed
with d “ 1 degrees of freedom and non-centrality parameter λj

λj “ Ajpδjq2 (15)

if δj ‰ 0 and the other entries of δ are null. When the latter assumption is not satisfied, e.g., when
damaged pertains to more than one element, or when testing an undamaged element while others are
damaged, the non-centrality parameter does not follow (15) and a minmax test to locate damage should
be used [9]. The sketch of the deployed damage detection and localization tandem is presented in Figure
1.

347



Figure 1: Damage detection scheme (left). Damage localization scheme (right).

Remark 1. The mode shape contained in ẑ (5) is called the unnormalized mode shape since its scaling
is arbitrary. To make it comparable between different data sets a normalization scheme is needed. On
the related note, the covariance of the normalized mode shapes is rank deficient [18], which must be
considered in (13)-(14) by removing the adequate rows. Two normalization methods were analyzed in
detail in [18], from which the normalization with the maximum mode shape component is used herein.

4. APPLICATION

This section is devoted to the application of the proposed damage detection and localization scheme on
data simulated based on Reissner-Mindlin plate model. The model consists of 64 first-order elements,
81 nodes and, consequently, 243 degrees of freedom (DOF). For the sake of simulation, proportional
damping is assumed, where the damping matrix is defined such that each mode has a damping ratio of
1%. The translational DOF are constrained to zero at the edge elements of the model. The excitation is
modeled as a white noise signal applied on all DOFs. The transverse acceleration data are sampled with
a frequency of 6000 Hz and collected with 11 sensors. One damage scenario emulating a 15% increase
in mass of element 47 is considered. The plate model is depicted in Figure 2.

1 2

3

4

5

6

7

8 9

10 11

Figure 2: Plate model with sensors.

In total, 200 data sets of length N = 1,000,000 in both healthy and damage states are simulated. For each
data set, modal parameters corresponding to the first 8 bending modes of the plate and their corresponding
covariance are estimated with stochastic subspace identification and the first-order delta method [14].
The estimates of natural frequencies tracked across the simulated data are shown in the left part of
Figure 3.
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Figure 3: Natural frequency estimates obtained from both healthy and damage data (left). Histograms of damage
detection test (right).

It can be viewed that for every data set the complete set of 8 modes is estimated and that the change in
the natural frequency estimates due to damage can hardly be distinguished from the visual inspection.
To detect damage, the non-parametric modal parameter-based test, i.e., when assuming that J z

θ˚
is an

identity matrix, is employed. The distribution of the test statistics is illustrated in Figure 3 (right). The
inflicted damages are clearly detected and a clear separation between safe and damaged states is observed.

Subsequently, the localization of the mass change in element 47 is considered. Due to a limited number
of sensors compared to the large FE model-based parametrization θ, the sensitivity of the residual with
respect to some components of θ may be equal, or be very close. Thus, such parameter components are
indistinguishable, and clustering of parameters in J z

θ˚
is performed. For this purpose the hierarchical

complete-linkage clustering of the normalized residual sensitivity after [9, 19] is used, and 26 parameter
clusters are distinguished. A dendogram diagram showing the clustered parameters is illustrated in Figure
4 and the left part of Figure 5. Subsequently, the minmax damage localization test is performed with
using the centers of the clustered sensitivity matrix. The test results are shown in the right part of Figure
5.

Figure 4: Dendogram showing hierarchical complete-linkage clustering of modal parameter sensitivities.

It can be viewed that the damage localization test yields the highest score for the cluster containing the
damaged element, and it can be clearly distinguished from the values of the test corresponding to the
remaining clusters.
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49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

Figure 5: Plate element clusters (left). Damage localization results - damage in element 47, corresponding to the
20th cluster (right).

5. CONCLUSIONS

In this paper, a Gaussian residual for damage detection and damage localization has been derived based
on the Mahalanobis distance between modal parameters in different states of the structure. The capa-
bilities of the method were showcased on a numerical simulations of a plate, where a small change in
the density of one element were clearly detected, and localized in a clustered parameter space. The pro-
posed approach is applied in the context of detecting damage in large-scale bridges in our companion
paper [20].
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[6] S. Greś, M. Döhler, P. Andersen, L. Mevel, Subspace-based mahalanobis damage detection robust
to changes in excitation covariance, Structural Control and Health Monitoring 28 (8) (2021) e2760.

[7] Y. Ou, E. N. Chatzi, V. K. Dertimanis, M. D. Spiridonakos, Vibration-based experimental damage
detection of a small-scale wind turbine blade, Structural Health Monitoring 16 (1) (2017) 79–96.

[8] S. Laflamme, L. Cao, E. Chatzi, F. Ubertini, Damage detection and localization from dense network
of strain sensors, Shock and Vibration 2016 (2016).
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ABSTRACT
Structural Health Monitoring (SHM) using OMA techniques utilizes the dynamic characteristics, as
indicators of the health state of the monitored structure. In fact, changes in these dynamic properties
can reflect either a potential degradation of the structural integrity or a change in the environmental
conditions (e.g., temperature, humidity, etc.). Therefore, to apply a successful SHM approach to the
monitored structures, the damage detection technique must identify and clearly separate the different
sources of changes in the monitored dynamic properties. In this context, the present study aims to detect
structural changes in a structure exposed to ambient vibrations and varying environmental conditions.
The investigated structure consists of a wooden mast and a steel frame topside that is clamped to a
concrete block at the bottom. In the monitoring campaign of the wooden mast, the vibration responses
are collected by means of a measurement system whose sensors are placed at strategic locations on the
topside, whereas the environmental conditions are recorded by a nearby weather station. The collected
data is utilized to (i) estimate the environmental conditions; (ii) remove their influence from the estimated
modal parameters, and finally (iii) detect structural changes induced by damages added with different
severities to the mast.

Keywords: Structural Health Monitoring, Operational Modal Analysis, Damage Detection, Environmen-
tal Influence, Environmental Model

1. INTRODUCTION

Critical structural systems, such as bridges, energy plants and offshore wind turbines are significantly
related to the economic and sustainable welfare of the modern world. Therefore, it is an essential priority
to ensure their structural integrity and safe operation, while reducing the risk of unexpected failures. In an
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attempt to achieve that, the field of SHM has been rapidly expanding over the last decades and numerous
techniques have been developed to evaluate the structural health on a continuous and reliable basis [1].

A widely spread application of SHM is based on Operation Modal Analysis (OMA) algorithms, where
vibration measurements are transformed into modal parameters, such as natural frequencies, damping
ratios, and mode shapes. Based on that, an assessment of the structural integrity can be achieved by
investigating potential changes in these dynamic characteristics [1, 2]. Various identification techniques
have been proposed over the years, thus an optimal selection is of high importance to ensure reliable
results. Additionally, another crucial parameter for the successful application of SHM is related to the
elimination of the environmental influence (e.g. temperature, humidity, wind speed, etc.) on the modal
properties [1, 3, 4]. It has been observed that the dynamic characteristics of structures exposed to ambient
vibrations and different environmental conditions can be affected to a significant extend by the environ-
mental variability. Therefore, to ensure a reliable vibration-based damage assessment, this environmental
impact must be eliminated. Numerous statistical methods have been used to remove the environmental
influence on the modal parameters, such as the Principal Component Analysis (PCA), multivariate linear
regression and auto regressive models [5, 6].

Along these lines, the present study aims at advancing the previous study conducted by [1], performed
in the same outdoor lab at DTU Civil Engineering. The main purpose remains the application of SHM
on a medium-sized wooden mast structure using automated OMA techniques. The innovative aspects
of this paper with regard to the previous study, however, are related to (i) a longer time duration of the
monitoring campaign; (ii) the fact that the mast is moved to new location where it is more susceptible to
wind-induced excitations forces; and (iii) to the fact that more accurate specimen’s vibration responses
are collected owing to the improved calibration of the low-frequency range vibration sensors [7]. Since
the experimental model is exposed to varying environmental conditions, it is essential to develop an
environmental model to remove the influence on the modal properties. To achieve that a PCA model
is utilized, leading to more robust results, mainly due to the increased duration of the monitoring cam-
paign. Moreover, several damage cases are induced to the wooden mast to investigate whether they can
be identified based on their influence on the modal parameters. Overall, the proper calibration of the mea-
surement system in combination with an accurate environmental model led to an increased robustness of
both OMA-based identification and damage detection.

2. THEORETICAL BACKGROUND

In this section, the theoretical background of the utilized methods is shortly introduced. The OMA-based
identification of the modal properties is achieved by the Eigensystem Realization Algorithm (ERA),
while the environmental model is obtained using Principal Component Analysis (PCA).

2.1. Eigensystem Realization Algorithm (ERA)

The eigensystem realization algorithm is a time domain identification technique proposed by Juang and
Pappa in 1985. The correlation functions of the vibration response can be interpreted as a set of free
decays [y1(k),y2(k), . . . ] in discrete time tk = k∆t, thus they can form a free decay matrix expressed
as [8]

Y(k) = PDkU0 (1)

where P is the observation matrix, D is the discrete time system matrix and U0 is the initial condition
matrix U0 = [u01,u02, . . . ]. Two block Hankel matrices are subsequently formed with s denoting the
number of block rows.
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H(0) =


Y(0) Y(1) . . .
Y(1) Y(2) . . .

...
...

Y(s− 1) Y(s) . . .

 , H(1) =


Y(1) Y(2) . . .
Y(2) Y(3) . . .

...
...

Y(s) Y(s+ 1) . . .

 (2)

As observed in Eq. (2), the only difference between the two Hankel matrices is a time shift of one sample
step. Therefore, by utilizing Eq. (1), the two matrices can be expressed as

H(0) = ΓΛ , H(1) = ΓDΛ (3)

where the observability matrix Γ and the cotrollability matrix Λ are given by

Γ =


P
PD
PD2

...
PDs−1

 , Λ =
[
U0 DU0 D2U0 . . .

]
(4)

The singular value decomposition (SVD) of the first Hankel matrix H(0) is then taken as

H(0) = USVT (5)

and, by making use of Eq. (2), the observability and cotrollability matrices are estimated as

Γ̂ = U
√
S , Λ̂ =

√
SVT (6)

The discrete time system matrix is finally estimated using the right part of Eq. (2) as

D̂ = Γ̂+H(1)Λ̂+ (7)

where Γ̂+ and Λ̂+ are the pseudo inverse of the estimated observability and controllability matrices,
respectively. The eigenvalues and the eigenvectors of the estimated discrete time system matrix are
obtained as

D̂ = [ϕ′
n] [µn] [ϕ

′
n]

−1 (8)

where the eigenvalues µn and the eigenvectors ϕn are associated with the natural frequencies and the
mode shapes, respectively. For a more detailed description of the ERA identification technique, the
reader is referred to [8].
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2.2. Principal Component Analysis (PCA)

The principal component analysis is a statistical procedure to estimate a lower-dimensional representa-
tion of a data set, while retaining most of the variation of the data. According to previous applications of
PCA in SHM [3, 4, 5, 6], the implementation starts with the initial data matrix Y containing N observa-
tions of n observed attributes. A singular value decomposition of YYT is implemented for the observed
features as

YYT = US2UT (9)

where U is an n x n matrix containing the singular vectors and S is a diagonal matrix including the n
singular values. The diagonal terms of S are organized in an ascending order and are associated with
the so-called principal components, which represent the directions of the data that explain the maximum
amount of variance. Therefore, the first principal components are associated with the desired physical
information, while the last ones include residual contributions mainly related to noise effects. The key
step to establish a successful PCA model is the optimal selection of m(< n) singular values that represent
sufficient amount of physical information. Once this is achieved, the loading matrix T is formed by
taking into account only the first m number of features (i.e. columns) from matrix U. Based on that, an
estimate of the observed features can be expressed as [3]

Ŷ = YTTT (10)

To evaluate the loss of information between the initial data matrix Y and the new estimate Ŷ, the residual
error matrix Ê is calculated as

Ê = Y − Ŷ (11)

Finally, the corrected values Yc are simply computed by summing the residual error matrix Ê with the
mean value of each feature Ȳ.

Yc = Ê+ Ȳ (12)

3. EXPERIMENT SETUP

3.1. Description

The experimental model utilized in this study is a medium-sized monopile structure, which consists of
a 3.6-meter high wooden mast with a square cross section 0.1m x 0.1m. A steel topside is placed at the
top of the mast, while at the bottom it is rigidly connected to a concrete block. Both connections at the
top and the bottom of the mast are bolted steel connections. The measurement system consists of a base
station and four geophones, which are vibration sensors with high sensitivity and low noise floor. The
sensors are placed on four different corners of the topside, two at the upper wooden plate and two at the
bottom one, as illustrated in the middle pane of Fig. 1.

The monitoring campaign lasted approximately three months, starting from November 30, 2021 and
finished on March 4, 2022. The monitoring period is split into 20-minute measurements, where the actual
measurement duration is 19 minutes, while an 1-minute break follows each measurement. Therefore, 72
measurements are performed per day that finally lead in a total number of 6441 measurement data files.
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Figure 1: Left: Experimental model; Top middle: Two sensors are clamped on the upper plate of the topside;
Bottom middle: Steel topside with the four sensors clamped on the different corners; Right: Damage cases on the
wooden mast.

3.2. Damage scenarios

The damage cases are introduced to the experimental model on February 15, 2022. The induced damages
are practically 11 cuts on the wooden mast, as illustrated in the right pane of Fig. 1. In the X direction,
the depth of each cut is initiated at 2 mm and is gradually increasing by 2 mm, until it reaches the
maximum depth of 10 mm on February 23, 2022. On the other hand, the Y direction of the mast is only
damaged once, where a cut of 10mm is performed on February 25, 2022. Detailed information regarding
the different damage cases are presented in the following table.

Damage case Date Time Severity Direction

1 02/15/2022 10:10 2mm X
2 02/15/2022 14:00 4mm X
3 02/17/2022 09:10 6mm X
4 02/21/2022 09:00 8mm X
5 02/23/2022 08:45 10mm X
6 02/25/2022 08:56 10mm Y

Table 1: Details about the damage scenarios.

4. RESULTS

The present section includes the obtained results from this experimental investigation. Firstly, the ERA
identification results are presented over the whole monitoring period, while a closer examination is sub-
sequently taken in a shorter damage detection period. At last, a PCA application is implemented to
eliminate the environmental influence on the modal properties.
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4.1. Identified modal parameters

Following the principles of ERA described above, the extracted data from the measurements are trans-
formed into the desired dynamic characteristics. In Table 2, the modal parameters (natural frequencies
& damping ratios) obtained during the undamaged state of the structure are presented for the first five
vibration modes.

Parameter Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Frequency [Hz] 1.1981 1.2078 1.9267 9.8102 12.3966
Damping ratio [%] 0.7126 0.8788 0.8800 0.5824 0.7404

Table 2: Dynamic properties of the first five modes.

To evaluate the performance of the ERA identification, the measurement data are transferred into the
frequency domain by estimating the spectral density functions. Transforming a vibration response signal
into the frequency domain has the significant advantage of providing a clearer picture of the physical
information [8]. In Fig. 2, the singular values of the spectral density matrix are illustrated, where the first
five natural frequencies can be identified as the frequency values corresponding to the highlighted peaks.
Comparing the natural frequencies from Fig. 2 with the results estimated by ERA, it is evident that the
values are identical.
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Figure 2: Singular values of the PSD matrix.

Furthermore, to assess the influence from both the environmental conditions and the induced damages,
the natural frequency evolution is examined over the monitoring period. The frequency variation is
illustrated in Fig. 3, where the damage period is denoted with two vertical lines, indicating the first and
the last damage case induced on the structure, respectively.

During the pre-damage period, it can be clearly observed that the natural frequencies of the first two
modes remain roughly steady around 1.2 Hz. However, it is evident that after the damage induction, a
gradual decrease is caused in the natural frequencies of the first mode, while in the second mode, the
natural frequencies seem to be affected only from the last damage scenario in Y direction. Moreover, as
soon as the damage period finishes, it can be seen that the natural frequencies reclaim their steady pattern
once again in both modes. In addition, it is worth mentioning that the discontinuities observed in Fig. 3
are mainly occurred due interruptions in the power supply of the outdoor lab, causing the measurement
system to shut down for short periods.
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Figure 3: Natural frequency evolution over the whole monitoring period.

4.2. Damage detection

To achieve a better understanding of the damage influence on the modal properties, a shorter period of 24
days is evaluated. This period practically starts one week before the occurrence of the first damage and
finishes one week after the induction of the last damage case. The evolution of the natural frequencies
over this shorter period is illustrated in Fig. 5, where the different damage scenarios from Table 1 are
indicated with vertical lines.

The selection of a smaller window of data provides a clearer picture of the damage impact on the modal
parameters. As shown in Fig. 5, the natural frequency of the first mode starts to decrease as the first
damage case of 2 mm is induced on the structure. After this point, this decreasing trend continues until
the end of the damage period where the frequency fluctuation becomes steady once again.
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Figure 4: Natural frequency evolution over the damage period for the first mode.

In contrast to the first mode, the natural frequency of the second mode does not appear to be affected by
the damages in X direction. In Fig. 5, it is clear that only the 10mm cut in Y direction has a notable
impact on the natural frequencies of the second mode. This impact is extremely significant though, as
the natural frequency suddenly decreases from 1.20 Hz to 1.13 Hz.

358



02/09 02/11 02/13 02/15 02/17 02/19 02/21 02/23 02/25 02/27 03/01 03/03

Date [mm/dd]

1.1

1.2

1.3
F

re
q

u
en

cy
 [

H
z] 2

m
m

4
m

m

6
m

m

8
m

m

1
0
m

m
 -

 X
 d

ir

1
0
m

m
 -

 Y
 d

ir

Figure 5: Natural frequency evolution over the damage period for the second mode.

4.3. Environmental model

As previously discussed, the development of an environmental model is essential to eliminate the in-
fluence of the varying ambient conditions on the modal parameters. To achieve that, a PCA model is
utilized where two principal components are taken into consideration. The results in terms of natural
frequencies after the application of PCA are illustrated in Fig. 6.
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Figure 6: Natural frequency evolution after the elimination of the environmental influence.

After the removal of the environmental effects, it is evident that a clearer picture of the damage effects
remains. In both modes, the fluctuation due to the varying environmental conditions is eliminated, lead-
ing to a more steady evolution of the natural frequencies. Additionally, the damage presence obviously
became more evident in this case, compared to the initial damage detection of the previous section. In
Fig. 6, six discontinuities are observed in the evolution of the first natural frequency after the occurrence
of each damage case, while only one significant offset is observed in the frequency evolution of the
second mode.

5. CONCLUSIONS

The present study focused on the OMA-based SHM on a medium-sized experimental model, while an
assessment of gradually induced damages is performed by utilizing changes in the natural frequencies.
Furthermore, a PCA model is developed to eliminate the influence of the environmental conditions on
the modal parameters. Overall, the obtained results showed that:
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• the damage presence in the experimental model led to a reduction of the natural frequencies of the
first two modes.

• the gradually induced damage cases in the X direction of the mast resulted a corresponding drop
of the natural frequencies only in the first mode, while in the second mode, the natural frequency
showed a significant decrease only due to the damage in Y direction.

• after removing the environmental effects, the robustness of the damage detection significantly
increased, since each damage case was clearly indicated by discontinuities in the time evolution of
the natural frequencies.
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ABSTRACT 

The health monitoring and the safety assessment of buildings and infrastructures during their life cycle 

are of paramount importance for assuring the building use with acceptable risks for users, especially 

after the occurrence of earthquakes or other exceptional events, such as hurricanes, blasts or vehicle 

impacts. For strategic structures with public functions (e.g., bridges, hospitals, police and fire stations, 

schools, etc.) the structural health monitoring can provide useful information about the building status, 

in terms of damage on structural and non-structural elements; if the monitoring system reports alert 

situations through suitably installed specific sensors, visual inspections and destructive or non-

destructive experimental tests can be also executed with the aim of supporting the decision-making 

process about the building use. 

The paper discusses about the effectiveness and usefulness of OMA in the assessment of the health 

conditions of buildings, and in its suitability within a structural health monitoring framework. An 

experimental campaign was performed on a laboratory steel-concrete composite frame with infill 

masonry walls: a progressive damage was produced to the non-structural components through cyclic 

load tests with increasing amplitude displacements, and vibration-based tests were performed with the 

aim of tracing the evolution of the frame dynamics and modal properties. Results demonstrate that 

OMAs are suitable for detecting the damage occurring to the non-structural components, while they are 

less useful in capturing the dissipative capabilities of the resisting nonlinear mechanisms that develop 

due to damage. 

Keywords: structural health monitoring, operational modal analysis, damage detection, infill 

masonry walls, laboratory experimental campaign 
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1. INTRODUCTION 

The assessment of the health status of structures during their life cycle is nowadays a topic of great 

interest, especially for structures with public functions (e.g., bridges, hospitals, police and fire stations, 

schools, etc.), for which a Structural Health Monitoring (SHM) is often recommended, in case of high 

hazards (e.g., seismic or hydrogeologic) exposure of vulnerability. Indeed, a monitoring system can 

provide useful information about the building status, in terms of damage on structural and non-structural 

elements, occurred during the building life and after exceptional events, such as earthquakes, 

hurricanes, blasts, vehicle impacts, etc. The SHM of a building permits to get (often continuously) 

information about some features of the structure (e.g., modal parameters, crack opening, sub-component 

tilting) that can be correlated with its health condition. If the SHM system reports alert situations 

through suitably installed specific sensors, visual inspections can be also performed to identify damage 

on structural and non-structural elements, and destructive or non-destructive experimental tests can be 

executed to evaluate the residual material mechanical properties. 

Among the others, the structural dynamic monitoring is nowadays widely adopted worldwide since it 

is rather easy to be conceived and very often it does not require the interruption of the building activities 

for the installation. The dynamic monitoring is based on the use of vibration-based methods [1] that 

adopt accelerations (or velocities) measured over the structure to characterize its dynamics, in terms of 

modal parameters (i.e., resonant frequencies, mode shapes and modal damping ratios). The basic idea 

behind this methodology is that modal parameters vary with the health status of the building (i.e., with 

the presence and/or the evolution of damage) since they are functions of the structure physical properties 

(mass, damping, and stiffness). Therefore, damage or changes of material mechanical properties and 

boundary conditions will cause changes in the modal properties, which can be detected performing 

dynamic tests on the structure over time. 

In the literature, many authors adopted vibration-based tests on real buildings to investigate the damage 

on structural and non-structural members, both adopting a gradual artificially induced damage [2] and 

using real excitations, such as earthquake strong motions [3,4]. Other authors adopted vibration-based 

tests to identify the structural and non-structural damage produced by displacements and forces applied 

to laboratory specimens [5,6]. One of the most common non-structural components built in framed 

structures are the infill walls, very often realized with masonry panels [7]. In the technical and scientific 

literature many works can be found addressing the topic of infill masonry wall damage detection, but 

only few addressing the use of vibration-based methods for this purpose [8,9]. Unfortunately, 

differentiating between damage occurred to structural and non-structural members is a hard task, 

especially when tests are performed on the whole building with infills. At the same time, it is crucial to 

establish if a structure can be further used or not after an exceptional event. 

In this paper, the effectiveness of low-amplitude vibration-based tests for evaluating the health status 

of structures is discussed. The research is developed based on results of an extensive experimental 

campaign performed on a steel-concrete composite laboratory frame with light infill masonry walls. 

The laboratory mock-up was dynamically tested in crucial phases of the experimentation adopting 

ambient vibration and impact load tests. In detail, dynamic tests were performed on the bare frame, 

when the infills were built and then during the infill damage, the latter produced by stepped increasing 

cyclic displacements applied to the whole structure. The experimental campaign is herein described, 

and the use of dynamic test results is addressed with the main aim to investigate its usefulness in a SHM 

framework. 

2. DESCRIPTION OF THE EXPERIMENTAL CAMPAIGN 

The laboratory experimental campaign was performed on a steel-concrete composite mock-up with 2-

bay moment resisting frames in the longitudinal direction and 1-bay braced frame in the transverse one 

(Figure 1). The mock-up is 8.4 m long, 2.8 m wide and 3.0 m high. The floor concrete slab is 12 cm 

thick, casted on collaborating corrugated steel sheets and connected to the beams of the steel frame by 

means of Nelson’s studs. On the floor, concrete blocks were added to simulate the presence of non-

structural and live loads. Two light infill masonry walls were built filling only one of both longitudinal 
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spans. Infills were built with 6 cm thick hollow clay bricks (with horizontally arranged holes) with 

about 1 – 1.5 cm thick head and bed mortar joints; infills are then plastered on both sides with a 0.7 cm 

thick gypsum plaster layer, leading to a total thickness of about 7.4 cm for each wall. More information 

about the mock-up can be found in [10].  

An extensive experimental campaign was undertaken on the mock-up and this paper addresses some of 

the performed tests; in detail, only the low-amplitude vibration-based tests are presented and discussed. 

Initially, Ambient Vibration Tests (AVTs) and Impact Load Tests (ILTs) were performed: the former 

consist in measuring the structure accelerations produced by the ambient excitation (in this case mainly 

microtremors due to the surrounding environment), while the latter foresee the excitation of the 

structure through instrumented hammer blows and the recording of both impacts and the produced 

accelerations. Then, the same tests were repeated after the construction of the infills. At this point Cyclic 

Load Tests (CLTs) were performed applying a stepped increasing longitudinal displacement to the 

structure, both in push and in pull directions. A total of 25 tests were performed, starting from 1 mm up 

to 13 mm of longitudinal displacement. These tests mainly aim to produce a progressive In-Plane (IP) 

damage to both infills, maintaining the steel frame within its elastic range. After each CLT, ILTs were 

repeated to dynamically characterize the infilled composite structure with different infill damage levels. 

AVTs are not performed after each load step since they required a long time to be performed and their 

outcomes are very similar to those obtained from ILTs, which are much faster to be performed. Indeed, 

it was found that the results obtained from AVTs are very similar to those achieved through ILTs, as it 

will be shown in the sequel. At the end of CLTs, both AVTs and ILTs were repeated. The experimental 

campaign is briefly resumed in Table 1. 

To perform dynamic tests, six low-noise uniaxial piezoelectric accelerometers (model PCB 393B31) 

with sensitivity of 10 V/g, frequency range of 0.07 – 300 Hz and resolution of 1 μg were adopted. 

Sensors were connected by means of coaxial cables to 4-channels dynamic signal acquisition modules 

(NI-9234) mounted on a USB chassis (NI cDAQ9178) and connected to a notebook equipped with a 

dedicated software for the data analysis and storage. Moreover, for the impact tests, an instrumented 

hammer (model PCB 086D20) characterized by sensitivity of 0.23 mV/N, measurement range of 

± 22.000 N (peak) and total mass about 1 kg, was also adopted to excite the mock-up. In Figure 1 the 

layout of accelerometers positioned on the slab, and of the hammer impacts are shown. 

Table 1. Summary of the laboratory experimental campaign. 

Mock-up description Performed tests 

Bare frame AVTs and ILTs 

Infilled frame (no damage) AVTs and ILTs 

Progressive damage to infills CLT and then ILT (25 times – from 1 to 13 mm) 

Infilled frame with completely damaged infills AVTs and ILTs 

 

 

Infill masonry wall (7.4 cm) 

Infill masonry wall (7.4 cm) 

(a) (b) 

Monoaxial accelerometer 

8.4 m 
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Hammer impacts 
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Figure 1. Tested laboratory mock-up: (a) some pictures, (b) dynamic test layout and instrumentation. 
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3. EXPERIMENTAL TEST RESULTS 

During CLTs infills progressively damage due to the increasing IP displacements to which they were 

subjected. For the sake of completeness, the mock-up hysteretic cycles obtained during the CLTs are 

reported in Figure 2, even if procedures and the instrumentation adopted to obtain the results are not 

previously described, as they go beyond the interest of this work. Hysteretic loops are reported only to 

understand the mock-up behaviour under longitudinal displacements, the latter involving the IP stiffness 

and strength of the infills. As can be seen from the backbone curves (red lines), infills experienced a 

first important damage when the mock-up longitudinal displacement reached about 6 - 8 mm (interstory 

drifts ranging between 1 and 2‰), as demonstrated by a drastic reduction of both infill strength and 

stiffness. This reduction is attributable only to infills damage since the steel frame always remained in 

the elastic field. Then, the IP strength of infills increases again after the drop, while the secant stiffness 

continues to reduce up to the end (the residual stiffness is about the 20% of the initial value). This 

behaviour is probably due to the development of different resistant mechanisms within the infills during 

CLTs. 

For what concerns the dynamic tests, Operational Modal Analyses (OMAs) are performed based on 

AVT measurements with the target of identifying the modal parameter of the mock-up, namely natural 

frequencies, damping ratios and mode shapes; in detail, the Covariance-driven Stochastic Subspace 

Identification (SSI-COV) [11] output-only technique is adopted, and the relevant modal parameters 

identified with this methodology are reported in Table 2, Table 3 and Figure 3. As can be seen, three 

mock-up vibration modes are always identified (for the bare frame, infilled frame and the frame with 

damaged infills), corresponding to the longitudinal, transversal and rotational vibration modes. For what 

concerns ILTs, the mock-up modal parameters are identified adopting the so-called Experimental 

Modal Analysis (EMA) and using the Numerical algorithm for Subspace State Space System 

IDentification (N4SID) [12], which is an input-output identification methodology working in time 

domain. The identified modal parameters are listed in Table 2 and Table 3 together with those obtained 

from OMAs; as can be noted, frequency values and damping ratios obtained through AVTs and ILTs 

identification procedures are always very close to each other, proving that ILTs can be used instead of 

AVTs to characterize the dynamic behaviour of the mock-up under low-amplitude excitations. 

Moreover, all frequencies and damping ratios identified from ILT measurements recorded during the 

whole experimental campaign (i.e., after each CLT) are reported in the graphs of Figure 4. Finally, the 

mode shapes obtained through ILTs measurements are not reported for the sake of brevity, but they are 

compared in terms of Modal Assurance Criterion (MAC) indexes in Figure 5. Here, the mode shape of 

each vibration mode obtained from ILT measurements is compared with the same mode shape found in 

the previous cycle load step. MAC indexes provide an indication of how the mode shapes are similar to 

each other: the closer the index to one, the more the mode shapes are similar. 
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Figure 2. Damage to infills: (a) hysteresis loops, (b) test protocols, (c) pictures of damaged infills. 
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Table 2. Frequencies [Hz] obtained from AVTs and ILTs for the bare frame and then before and after the infill 

damage. 

Mode type 

AVT ILT 

Bare 

frame 

Before 

damage 

After 

damage 

Bare 

frame 

Before 

damage 

After 

damage 

Transverse 8.42 8.37 8.26 8.42 8.35 8.26 

Rotational 11.62 13.39 12.35 11.60 13.34 12.28 

Longitudinal 2.95 17.69 10.86 2.95 17.26 10.74 

Table 3. Damping ratios [%] obtained from AVTs and ILTs for the bare frame and then before and after the 

infill damage. 

Mode type 

AVT ILT 

Bare  

frame 

Before 

damage 

After 

damage 

Bare 

frame 

Before 

damage 

After 

damage 

Transverse 0.55 0.67 0.58 0.40 0.77 0.61 

Rotational 0.24 0.47 0.35 0.62 1.47 1.43 

Longitudinal 0.32 0.98 0.52 0.35 1.32 1.16 

 

 Transverse mode Rotational mode Longitudinal mode 

 

Figure 3. Mock-up mode shapes. 
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Figure 4. ILT results during the progressive damage of infills: (a) frequencies, (b) damping ratios. 
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Figure 5. MAC indexes between mode shapes identified through ILT results during the progressive infill 

damage. 
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4. USE OF VIBRATION-BASED TEST RESULTS FOR SHM 

The results of AVTs and ILTs are analyzed in this section in order to investigate changes in the mock-

up dynamics due to the progressive damage of infills and, hence, to evaluate their applicability in a 

SHM framework. Analyzing the frequencies obtained from OMAs before and after the infill 

construction (Table 2), it is evident how these non-structural elements affect the dynamic behavior of 

the mock-up; in particular, the frequency of the longitudinal mode sensibly increases, passing from 2.95 

to 17.69 Hz, and also that relevant to the rotational mode varies, even if in a less pronounced way, 

passing from 11.62 to 13.39 Hz. On the contrary, the frequency relevant to the transverse mode is 

slightly influenced by the infill presence, and it reduces after the infill construction, probability because 

the infills mostly contribute to the structural dynamic behavior in term of mass rather than in term of 

stiffness increase. The infill damage leads to a general decay of frequency values, especially for the 

longitudinal modes, whose frequency drastically reduces of about 40%. Anyway, it is interesting to 

observe that, although severely damaged, infills still contribute to increase the longitudinal and 

rotational (in a less pronounced way) stiffness of the mock-up, being the frequency values obtained at 

the end of CLTs higher than those obtained for the bare frame. Hence, it can be asserted that the 

monitoring of frequencies in infilled structures can lead to obtain useful information about their health 

status and about the condition of their non-structural components. On the contrary, the damping ratios 

identified in the three key phases discussed before (Table 3) are in all cases under 1% and do not show 

evident trends, so they cannot help the user to understand if the structure suffered or not a damage. This 

suggests that, for the structural system at hand, AVTs are not adequate to capture the dissipative 

capabilities of the damaged system because the latter are essentially due to friction phenomena 

occurring within the damaged infills that cannot be activated by the low-amplitude vibrations. Same 

considerations about the usefulness of frequencies and damping ratios in a SHM framework stem from 

the analysis of ILTs results, which are very similar to those obtained from OMAs. Moreover, analysing 

the frequency evolutions of Figure 4, different trends can be recognised: frequencies relevant to the 

transverse mode remain almost constant, those relevant to the rotational mode slightly decrease, while 

those relevant to the longitudinal one sensibly decrease, showing an almost linear decay trend. In detail, 

a more pronounced decay is observed in correspondence of longitudinal displacements ranging between 

5.5 and 6.0 mm and at the end. The first one is consistent with the infill damage phenomena previously 

discussed in commenting the hysteretic loops of the system; as already stated, this decay is probably 

due to an important infill damage that trigger the formation of a new resisting mechanism. Nevertheless, 

the frequency reduction observed between 5.5 and 6.0 mm is not so evident as to suggest a structural 

(or, in this case, non-structural) damage activation, especially in a SHM blind procedure (i.e., without 

performing visual inspections). The evolution of mode shapes (represented through MAC indexes) is 

not of particular interest in tracing the damage activation and its evolution. Indeed, as can be seen from 

Figure 5, the mode shapes remain almost the same, without significant modifications and without 

showing significant trends; moreover, MAC indexes always exhibit high values (higher than 0.84).  

The tracing of resonance frequencies during the life of a structure is often not enough to establish its 

health condition. A SHM strategy for infilled structures that support this type of monitoring can be 

found in [13]; in the paper, the authors propose to perform AVTs during the main construction phases 

of the bare structural frame and then during the construction of the non-structural components, as, for 

instance, infills. This procedure has some advantages: it allows to control the construction correctness, 

to identify the infill contribution on the building dynamics and permits to support the interpretation of 

SHM system outcomes during the building life. Indeed, performing AVTs and OMAs during the 

construction of an infilled frame structure allows to obtain its time-frequency curve, which can be used 

to interpret SHM data. As an example, Figure 6 shows a typical time-frequency curve obtained 

monitoring the fundamental frequency of a multi-story infilled frame structure during its construction. 

Point A represents the frequency value at the beginning of the bare frame construction, point B the 

fundamental frequency at the end of the bare frame construction, and point C represents the end of 

construction, when also the non-structural components are built. Two different frequency trends are 

clearly visible: from A to B the fundamental frequency decreases because the mass addition is 

predominant with respect to the stiffness increase in the dynamics of the bare structure; contrarily, from 

B to C the fundamental frequency increases because of the stiffening contribution of infills. Point D 

represents the fundamental frequency value of the structure when the infills are completely damaged 
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and they contribute to the building dynamics only in terms of added mass. Obviously, this frequency 

value can be only estimated adopting a numerical model of the structure. Once the time-frequency curve 

is available it can be adopted to interpret SHM data during the building life: if the measured frequency 

remains almost constant and equal to point C, then the health condition is verified; if it ranges between 

point C and D, then a possible damage to the non-structural components occurred; if it drops below 

point D, then a possible structural damage (together with the non-structural one) may have occurred. It 

is worth noting that particular attention must be paid to the influence of environmental conditions on 

the fundamental frequency value. This procedure is applied for the case study at hand; in this case, the 

time-frequency curve for the mock-up longitudinal vibration mode (the one mostly affected by the infill 

presence) is built and, as can be seen from Figure 6, this is very simple because the mock-up has only 

one floor (point A matches B). The frequency corresponding to point D is evaluated based on a modal 

analysis performed on a Finite Element Model (FEM) of the mock-up already available and that was 

built for other research purposes [14]. In this FEM, infills are not modelled and they are accounted for 

only as added masses applied to the bare frame, hence neglecting their stiffness contribution. Then, 

point X, which corresponds to the frequency measured at the end of the experimental campaign (i.e., 

when infills were completely damaged) is placed on the graph and it can be seen that it is positioned 

between points C and B, confirming that (very probably) the frame did not suffer structural damage, as 

supported by visual inspection performed during the experimental campaign. This simple application 

confirms that the use of the time-frequency curve could become crucial in case of blind monitoring, 

where performing visual inspections may be complicated, or even impossible.  

5. CONCLUSIONS 

In this paper, the applicability of low-amplitude vibration-based tests to investigate the health condition 

of an infilled structure has been investigated. The study was conducted on the basis of results obtained 

from an extensive experimental campaign performed on a steel-concrete composite laboratory frame 

with light infill masonry walls. The laboratory mock-up was dynamically tested in key phases of the 

experimental campaign, namely without infills (bare frame), when the infills were built and then after 

the infill damage, the latter produced by a stepped increasing longitudinal cyclic displacement provided 

to the structure. Low-amplitude dynamic tests (ambient vibration and impact load tests) were performed 

at each step to identify the system modal parameters.  

From the analysis of test results some considerations can be drawn. Firstly, it has proven (as expected) 

that the infill construction produced a very high increasing of structural stiffness, especially for 

vibration modes that involve the in-plane stiffness of infills. Secondly, the infill damage produced a 

frequency reduction that can be detected through both ambient vibration and impact load tests. On the 

contrary, the evolution of damping ratios is not representative of the increasing damage occurred to 

non-structural elements since no evident trends were captured during the whole experimentation, being 

the dissipative mechanisms not activated by low-amplitude excitations.  
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Figure 6. Time-frequency curve: (a) theoretical curve, (b) application to the mock-up. 
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Finally, a procedure for the structural health monitoring based on the tracing of the time-frequency 

curve of the structure during its construction process, is presented and then applied to the case study at 

hand, discussing its advantages.  

In conclusion, it can be asserted that tracing frequency values from dynamic tests could be a useful tool 

to monitor the health status of a structure and to find possible occurred damage of structural and non-

structural members. 
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ABSTRACT
Modal parameters are estimated from vibration data, thus they are inherently afflicted with statistical
uncertainties due to the unknown ambient excitation and measurement noise. While the point estimates
of the modal parameters can be obtained with several system identification methods, only few of them
also provide the associated uncertainties. The quantification of these uncertainties is important for many
applications, since they are a means to assess the precision of the estimates, and to evaluate if changes
between different datasets are statistically significant or not. As such, they are an added value in mod-
ern modal analysis practice and used in applications to e.g., damage detection and localization, reliability
analysis, modal tracking and model calibration. For subspace-based system identification, efficient meth-
ods for uncertainty quantification have been developed for the last 15 years, yielding reliable estimates
of the uncertainties at reasonable computational cost. They cover a wide range of subspace methods and
their application areas. In this paper, an overview of the developments is given and the importance of the
knowledge of the uncertainties is illustrated.

Keywords: Uncertainty quantification, subspace methods, (operational) modal analysis, monitoring

1. INTRODUCTION

The identification of dynamic system characteristics from vibration measurements is a fundamental task
in engineering. Amongst others, subspace-based system identification methods are well-suited for this
purpose. They identify the system matrices of a linear time-invariant state-space model that describes
the dynamic system behavior [1], from which the modal parameters are retrieved. The estimates based
on data are inherently afflicted with statistical uncertainties due to the unknown ambient excitation, mea-
surement noise and limited data length. The quantification of these uncertainties is tied to the deployed
identification method. However, the subspace identification methods only produce point estimates but
not their related confidence bounds.
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The objective for uncertainty quantification is to obtain the modal parameter estimates and their confi-
dence bounds from the same dataset. While the statistical properties of estimates from subspace methods
have been analyzed in great detail in the automatic control literature in the past, e.g. in [2–4], the ex-
pressions therein cannot be directly used for an actual covariance estimation in practical applications,
since they require in addition e.g. the estimation of the unknown states and their covariances, which are
not computed in the modal parameter estimation. A different approach was proposed in [5], where the
covariance of estimated parameters is computed easily from the sample covariances of the underlying
output data covariances and their related sensitivities.

The sensitivity-based covariance propagation is a simple and powerful tool for uncertainty quantifica-
tion, and is theoretically justified by the statistical delta method [6]. It states that a function of an asymp-
totically Gaussian variable is also asymptotically Gaussian if its sensitivity is non-zero, and gives the
respective covariance expression. Since the output covariances that are the basis of any subspace method
are asymptotically Gaussian, this strategy can be used for characterizing the statistical distributions and
in particular the covariance of the modal parameters and functions thereof.

This paper summarizes some of the developments for uncertainty quantification in the context of sub-
space methods from the last 15 years. In the first part, theoretical and algorithmic developments are
presented regarding the uncertainty quantification of modal parameters for diverse subspace methods,
their efficient implementation and the uncertainty quantification of the related modal indicators. In the
second part, modal-parameter based methods are presented where the uncertainty information of the
underlying modal parameter estimates is integrated, enhancing the originally deterministic methods.

2. BACKGROUND OF SUBSPACE-BASED SYSTEM IDENTIFICATION AND UNCERTAINTY
QUANTIFICATION

In this section, the subspace-based system identification method for modal analysis and the associated
uncertainty quantification framework are outlined. The schematics of the framework are presented in
Fig. 1.

Subspace-based modal parameter estimation Delta method-based uncertainty quantification

Measurements

Data covariance / projections Sample covariance
of data covariance

Modal parameters Modal parameter covariance

subspace algorithm
analytical sensitivity
of subspace algorithm

Figure 1: Framework of subspace identification and uncertainty quantification

2.1. Subspace-based system identification

Assume that the vibration behavior of the investigated structure can be modelled by a linear time-
invariant system, and that in the simplest case only outputs are measured while inputs (acting forces)
are unknown. Then the system dynamics can be described by the discrete-time state space model{

xk+1 = Axk + wk

yk = Cxk + vk
, (1)

whereA is the state transition matrix, C is the output matrix, and k is the integer time step corresponding
to the system at time t = k∆t, where ∆t is the sampling rate. Vector yk ∈ Rr contains the measured
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outputs (such as accelerations, velocities, displacements, strains), and xk ∈ Rn is the state vector. The
state noise wk ∈ Rn is related to the unknown ambient excitation, and vector vk ∈ Rr is the output noise.
The modal parameters are related to the eigenvalues and eigenvectors (λi, φi), i = 1, . . . , n, of A and to
C by

µi =
log(λi)

∆t
, fi =

|µi|
2π

, ζi =
−Re(µi)

|µi|
, ϕi = Cφi, (2)

where µi is an eigenvalue of the corresponding continuous-time system, fi is the natural frequency, ζi is
the damping ratio and ϕi is the mode shape at the output coordinates.

To estimate the matrices A and C from the output data yk of length N , k = 1, . . . , N , and consequently
the modal parameters in (2), subspace methods are used. They are based on projecting (or simply mul-
tiplying) data Hankel matrices with a future and a past time sample horizon obtaining some matrix Ĥ,
such that a consistent estimate of the system’s observability matrix can be obtained from the column
space of Ĥ. The respective data Hankel matrices can be defined as

Y− =
1√
N


y1 y2 . . . yN
y2 y3 . . . yN+1
...

...
. . .

...
yp yp+1 . . . yN+p−1

 , Y+ =


yp+1 yp+2 . . . yN+p

yp+2 yp+3 . . . yN+p+1
...

...
. . .

...
y2p y2p+1 . . . yN+2p−1

 ,
where Y− can be built also from a subset of reference sensors or projection channels but not necessarily
from all sensors.

There are many subspace methods in the literature [1, 7] with different ways to compute Ĥ, but from
which the modal parameters are retrieved in the same way. For example, the covariance-driven subspace
algorithm [8] computes Ĥ = Y+Y−T , which corresponds to a matrix containing the output covariances
of the data for different time lags. Their theoretical values satisfy the decomposition

H = OC, where O =


C
CA

...
CAp−1

 (3)

with the observability and stochastic controllability matrices O and C. With the singular value decom-
position (SVD) truncated at the desired model order

Ĥ =
[
U1 U0

] [S1 0
0 S0

] [
V T
1

V T
0

]
, (4)

an estimate Ô = U1S
1/2
1 of the observability matrix is obtained. Then, the output matrix C is estimated

from the first block row of the observability matrix, and the state transition matrix is estimated from the
shift-invariance property in a least-squares sense as Â = (Ô↑)†Ô↓, where Ô↑ and Ô↓ are the observabil-
ity matrix estimate without the last and first block row, respectively. Ultimately, the modal parameters
are obtained from the eigenvalues and eigenvectors of Â and from Ĉ as in (2).

In engineering practice the modal parameters are obtained at different model orders by successively
truncating the SVD in (4) and interpreted in so-called stabilization diagrams with the goal to separate
(stable) physical modes from spurious ones. An efficient procedure for the multi-order modal parameter
estimation can be achieved by exploiting the structure of the least-squares problem at multiple model
orders for estimating Â, as detailed in [9].
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2.2. Uncertainty quantification

The delta method is a statistical tool that helps to estimate the covariance of a function of an asymptoti-
cally Gaussian variable [6]. It is used to propagate the sample covariance of the data-related covariances
that are computed in the first step of the subspace algorithms through all steps of the algorithm down to
the modal parameters or functions thereof. Finally, confidence intervals of the computed parameters can
be derived.

The first step of the subspace algorithms involves data projections that involve the computation of output
covariances. If inputs (e.g. due to artificial excitation) are available in addition to the measured outputs,
then this step also involves input/output covariances of the data. These data-related covariances are
asymptotically Gaussian, i.e.,
√
N(R̂ − R)→ N (0,ΣR)

where R̂ is a vector containing all covariance estimates involved in the chosen subspace method. An
estimate Σ̂R of the covariance can be easily evaluated by the sample covariance based on partitions of
the available data. The propagation of this covariance to the modal parameter estimates is then based on
the delta method, stating that a function Ŷ = f(R̂) is also asymptotically Gaussian with
√
N(Ŷ − Y )→ N (0,JY,RΣRJ T

Y,R).

The derivative JY,R of the function with respect to R is obtained from perturbation theory. For a first-
order perturbation it holds ∆Y ≈ JY,R∆R. Hence, perturbing the functional relationship between
R and Y analytically and neglecting higher-order terms yields the desired derivative, in particular for
cases where the functional relationship is not explicit like for the SVD or eigenvalue decomposition.
Subsequently, covariance expressions for the estimates satisfy

Σ̂Y ≈ ĴY,RΣ̂RĴ T
Y,R. (5)

With this principle, the uncertainties of the output covariances from the first step of the subspace method
can be propagated step by step through the algorithm down to the modal parameters and related quanti-
ties. Finally, confidence intervals of the estimates can be established based on the computed covariance
and the fact that the distribution of the estimates can be approximated as Gaussian. For example, if Ŷ is
the vector containing the modal parameter estimates, then the covariance of each component Ŷi is related
to the respective component σ̂2Yi

on the diagonal of the asymptotic covariance estimate Σ̂Y , and the 95%
confidence interval is given by

(Ŷi − 2 · 1√
N
σ̂Yi , Ŷi + 2 · 1√

N
σ̂Yi),

i.e. this interval contains the true value Yi of the estimate Ŷi with a probability of 95%.

Figure 2: Histograms of modal parameter estimates with the delta method-based Gaussian approximation from
[10].
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To illustrate the Gaussian character of the modal parameter estimates in a practical setting, histograms of
the first frequency and damping ratio are shown in Fig. 2 that are obtained from 100 datasets containing
experimental data of a wind turbine blade [10], together with their mean Gaussian approximation pro-
vided by the delta method. It can be seen that the Gaussian approximation is appropriate, and that the
modal parameter covariance estimated from one dataset (on which the mean fit is based in the figures)
describes well the empirical distribution from the histogram.

3. THEORY AND ALGORITHMIC DEVELOPMENTS

3.1. Efficient implementation and uncertainty quantification in stabilization diagrams

The algorithm for uncertainty quantification of modal parameters from covariance-driven subspace iden-
tification has been proposed in [5], where the involved analytical sensitivities for the covariance propa-
gation as well as the initial sample covariance are derived. However, in its direct implementation the size
of the involved covariance matrices is considerable, which makes it computationally taxing and causing
memory problems even for moderately sized problems. To alleviate this problem, a memory efficient
and fast computation scheme for this method has been developed in [11] based on a mathematical refor-
mulation of the algorithm, where in particular the structure of the the initial sample covariance estimate
is exploited. Moreover, the covariance computation is optimized for multiple model orders in the sta-
bilization diagram in [11], where the fact is exploited that the first columns of the observability matrix
estimate at a higher model order are identical to the observability matrix estimate at a lower model order
due to the SVD in (4). In this way, redundant operations in the computation of the stabilization diagram
uncertainties can be avoided, and the algorithmic speed increased by two orders of magnitude of the
maximal model order compared to a direct implementation, resulting in computation times of less than a
minute for typical problem sizes.

In Fig. 3, the stabilization diagram from a dataset of the Z24 Bridge is shown, where the estimated
standard deviations of the frequencies are shown as horizontal bars. Putting a threshold on the coeffi-
cient of variation of the frequencies (standard deviation divided by the frequency) cleans the diagram
considerably, as seen in Fig. 3 (right).
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Figure 3: Stabilization diagram of Z24 Bridge without (left) and with threshold on standard deviation of frequen-
cies (right).

The uncertainty information of the modal alignments in the diagram can then be used to obtain global
mode estimates [12], and to actually obtain the modal alignments by automated statistical clustering
approaches [13].

3.2. Uncertainty quantification for diverse subspace methods

The family of subspace methods is big, including covariance-driven and data-driven methods, methods
for output-only (stochastic) system identification, and methods for input/ouput (combined deterministic-
stochastic) for the case where some of the inputs are known. The uncertainty quantification strategy for
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the above-mentioned covariance-driven subspace method has been extended to a wide range of different
subspace methods in [14] for the purpose of modal parameter uncertainty quantification.

The main difficulty in the extension to other subspace methods lies in the link between the matrix Ĥ and
the data-related covariance matrices, in order to perform the first step of uncertainty propagation. The
covariance-driven subspace method is the simplest of the subspace methods for uncertainty quantifica-
tion, since it only depends on one data-related covariance matrix Y+Y−T . The sample covariance of
this matrix is then propagated throughout the method. In other subspace methods, the construction of
the initial ‘projection matrix’ Ĥ, from which the observability matrix is obtained, is more complex. For
‘data-driven’ methods like UPC [1, 8], the projection is not immediately linked to output covariances, but
is a matrix that grows with the number of data samples. However, it can be shown that the observability
matrix can be equivalently related to ĤĤT for the purpose of uncertainty propagation, which is again
‘covariance-driven’. For the case of UPC where Ĥ = Y+Y−T (Y−Y−T )−1Y−, the algorithm depends
on two data-related covariance matrices, namely Y+Y−T and Y−Y−T . In the presence of known inputs,
matrix Ĥ depends furthermore on covariance matrices between outputs and inputs, and between inputs.
In [14], the related uncertainty quantification schemes are developed for different classes of subspace
methods, namely

• Output-only orthogonal projection data-driven algorithm (UPC),

• Input/output covariance-driven algorithm,

• Input/output orthogonal projection data-driven (similar to MOESP),

• Input/output oblique projection data-driven (N4SID).

The developed strategies allow an easy extension also to other subspace methods. While the system
matrices A and C and the related modal parameters are obtained from the observability matrix in these
methods, there is an alternative way to obtain them based on the state sequences in data-driven subspace
methods like UPC, for which the uncertainty quantification scheme has been developed recently in [15].

With the availability of input data, the system matrices B and D of the related input/output state space
model can be identified in addition to matrices A and C. With the knowledge of these matrices, the
parametric transfer function can be obtained. The associated uncertainties for B and D, and the phase
and magnitude of the transfer function have been obtained in [16], showcased in Fig. 4. It can be seen that
the computed confidence intervals coincide well with the empirical ones in a Monte Carlo simulation.

Figure 4: First component of phase and magnitude of H(z) with Monte Carlo and delta method-based confidence
intervals from [16].
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3.3. Uncertainty quantification of modal indicators

Modal indicators like the Modal Assurance Criterion (MAC) and the Modal Phase Collinearity (MPC)
are computed from mode shapes and thus inherit their statistical uncertainties when computed from
measurement data. Hence, they will never be exactly one (indicating a perfect mode shape match, or
a perfectly real-valued mode shape), but only close to one. Hence, the quantification of the statistical
uncertainties is required in order to evaluate if the modal indicators are significantly close to one or not.

The particular difficulty in uncertainty quantification of the modal indicators is their boundedness in the
interval [0, 1]. When the theoretical value is one, e.g., when the MAC is evaluated for identical mode
shapes or when the MPC is evaluated for a real-valued mode shape, then the distribution of the corre-
sponding estimates accumulates near one and is not Gaussian anymore. Hence the previous first-order
framework for uncertainty quantification cannot be used anymore. In [17, 18] the distribution properties
of the MPC and MAC estimates have been derived, as well as the respective confidence intervals. It
turns out that the distributions for theoretical values at the border of the interval (i.e., for MAC or MPC
equal to one) can be described by means of the second-order delta method, where the distributions can
be approximated by a scaled and shifted χ2 distribution, whereas in the inside of the interval [0, 1] the
distributions are asymptotically Gaussian, as illustrated in Fig. 5.

Figure 5: Distribution fits of MAC estimates from delta method, together with histograms from Monte Carlo
simulation. Left: MAC of estimates of different mode shapes with Gaussian approximation, right: MAC of
estimates of equal mode shape with scaled and shifted χ2 approximation, from [18].

3.4. Validation

The presented methods for uncertainty quantification of the modal parameters and the modal indicators
have not only been extensively validated in simulation studies, but also on experimental data. A first
validation of the uncertainties obtained from the covariance-driven subspace methods was reported in
[19] using data of a bridge and of a building from different sensor setups. More recently, an extensive
validation study on a laboratory test of a large-scale wind turbine blade was carried out in [10] based
on 100 experimental data sets, covering all of the presented subspace methods and modal indicators.
The results confirm that the delta method is, on average, adequate to characterize the distribution of the
considered estimates from all the different methods solely based on the quantities obtained from one data
set, validating the use of this statistical framework for uncertainty quantification in practice.

3.5. Some case studies

Modal parameter uncertainties are particularly useful in the monitoring of structures over time. Some
large scale case studies have been reported where the modal parameter uncertainty has been evaluated.
One example is the S101 Bridge [18, 20], where damages were introduced to the bridge while measure-
ment data was collected continuously during four days. The role of the modal parameter uncertainties
was evaluated in [21] for the monitoring the Baixo Sabor arch dam during several years, where it was
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concluded that the uncertainties are particularly useful for removing outliers in the modal parameter
tracking. In [22], the accuracy of the uncertainty estimates during ice-structure interaction was evalu-
ated, and applied to monitoring data of a lighthouse.

4. UNCERTAINTIES IN MODAL PARAMETER-BASED METHODS

Modal parameters and modal indicators are used in many engineering applications. Instead of using
their point estimates only, the uncertainties of the estimates are an additional valuable information that
can enhance methods. In this section two examples are given where the quantified modal parameter
uncertainties are integrated into originally deterministic methods, namely for damage localization and
for finite element model updating. Furthermore, some application cases are briefly presented.

4.1. Flexibility evaluation and DLV-based damage localization

The damage locating vector vector approach [23] computes originally a vector in the null space of the
change of flexibility matrix that is computed from input/output measurement data from the reference and
from the damaged states, and then applies it as a load (at the sensor coordinates) to a finite element model
of the structure to compute the stress field. Damage is located where the resulting stress is zero. The
approach has been generalized the output-only case [24], where the required load vector is computed
from the null space of the transfer matrix difference, which can be evaluated from the modal parameters
solely.

Instead of evaluating the resulting stress deterministically to decide if it is zero or not over a structural
component, a statistical evaluation is made in [25–27] where the modal parameter uncertainty is prop-
agated to the computed stress field and used for a decision with hypothesis tests. The method has been
extended the case of changing temperature in [28], where the temperature influence is removed from
the modal parameters. In these works it has been shown that the performance of the damage localiza-
tion is largely increased when considering the modal parameter uncertainties, as illustrated in Fig. 6. It
can be seen that the rate of successful damage localization is always higher when the considering the
uncertainties in the statistical tests compared to the deterministic evaluation of the stress estimates.

Figure 6: Success rates for DLV-based damage localization with and without considering modal parameter uncer-
tainties for different temperature scenarios, from [28]. Success rates are higher when considering the uncertainties
in the evaluation (red vs. black curve, pink vs. blue curve).

In a related work [29], the uncertainty of the modal parameters as well as assumed uncertainties of
finite element model parameters have been propagated to the flexibility matrix estimate and associated
computed deflections under static loads with the purpose of reliability analysis.
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4.2. Finite element model updating

Modal parameters are essential for finite element model updating, and their uncertainties can be valuable
for the updating problem. Since the updated model parameters are a function of the modal parameter
estimates, the uncertainty of the model parameters due to the uncertainty of the modal parameters can be
evaluated by uncertainty propagation. This was carried out in [30], where the propagation is performed
through each iteration step of the updating minimization problem in a subspace fitting approach. Fur-
thermore, the uncertainties of the modal parameters can be directly considered in the formulation of the
objective function as well as in the stopping criterion for the optimization, as developed in [31]. In this
work, model frequencies and mode shapes (via the MAC) are penalized in the objective function when
they are outside the confidence bounds of their estimated counterparts, which leads to a steeper objective
function. The optimization search can be terminated once the model-based modal parameters are within
the confidence bounds of their data-based counterparts, leading to an efficient algorithm for the updating
problem.

In Fig. 7, a modal parameter-based objective function is illustrated without and with the consideration
of the uncertainties. First of all, it can be seen that the objective function is indeed steeper when consid-
ering the uncertainties, which should facilitate the optimization search. Second, it can be seen that the
minimum of the objective function (red line) that is computed on the modal parameter estimates is not
taken on at the true parameter values (green line) due to the modal parameter uncertainties, but just close
to it. This also confirms that convergence of the optimization search to the minimum of the objective
function is actually not required, and it is sufficient to stop the search once arrived in the yellow region
indicating the values of the objective function where the model-based modal parameters are within the
confidence bounds of their estimates.

Figure 7: Modal parameter-based objective function to be minimized in the model updating, for two model pa-
rameters in the vicinity of their true values. Without (left) and with consideration of modal parameter uncertainties
(right), from [31].

5. CONCLUSIONS

The methods for uncertainty quantification in subspace-based operational modal analysis have evolved
over the last years, offering computationally efficient tools for a wide range of methods and engineering
applications. They also have become part of commercial software [32]. The methods have shown their
adequacy in extensive validation studies as well as in diverse case studies on real structures. Future
work on the topic should include, e.g., further integration of the quantified uncertainties in methods for
damage diagnosis, including in the data normalization step to remove environmental effects, as well as
in data-based reliability analysis.
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ABSTRACT
In data-driven system identification it is assumed that the dynamics of the system can be obtained from
a low-rank structure of certain large-size matrices, e.g., an output covariance Hankel matrix. A classical
approach to retrieving relevant dynamics is to truncate the singular value decomposition of the considered
matrix by retaining only the most significant singular values corresponding to the true order of the noise-
free matrix. The elusive true order of the system model is generally unknown; its selection, however, is
a fundamental task in application of subspace identification methods for estimation of modal parameters
and their uncertainties, often for the purpose of damage diagnosis. In this paper, a statistical methodology
to approximate the model order of the output covariance Hankel matrices is derived and applied in the
structural damage detection context. It is shown that the model order can be retrieved by analyzing
the statistical distribution of the sensitivity of the output covariance Hankel matrix against a random
perturbation of its eigenvalues. It is shown that this distribution follows a dual framework, which depends
on the covariance of the inputs (loads) acting on the mechanical system. The proposed methodology is
applied to the low-rank approximation of output covariance Hankel matrices , extracted as part of the
subspace damage detection of a large-scale bridge. It is demonstrated that the robustness of damage
diagnosis is enhanced by reducing the number of false alarms.

Keywords: Hankel matrix denoising, statistical damage diagnosis, subspace methods, eigenvalue condi-
tion number, Structural Health Monitoring

1. INTRODUCTION

In matrix denoising the aim is to recover a low-rank structure of a large-size matrix minus the noise.
A possible way to attain this is to truncate the singular value, or the eigenvalue decomposition of the
considered matrix, by keeping only the most significant singular/eigen values corresponding to the true
order of the noise-free matrix. The true order of a noise-polluted matrix is rarely known; its selection,
however, forms a fundamental task in shrinkage [1], estimation of modal parameters and their uncertain-
ties in Operational Modal Analysis (OMA) [2, 3, 4], statistical damage diagnosis in Structural Health
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Monitoring (SHM) [5, 6, 7, 8, 9], amongst myriads of other applications.

The choice of the model order has been extensively studied in the engineering community in the context
of subspace identification methods [10], where two main lines of work are pursued; a first relying on
signal processing, without identification of the system dynamics, and a second involving procedures for
assessing the fit of the identified model to data. In the first category, the simplest approach is to search
for a sudden decrease, i.e., a substantial gap, between singular values plotted in a decreasing order,
i.e., a scree plot, [10]. Despite its widespread use in the modal analysis community, distinguishing a
clear separation between the singular values of the signal and the noise can be difficult when data is
noisy. Related to the second category are the so-called information criteria, e.g., the Akaike and Schwarz
criteria [11], modal contribution [12], or modal dispersion [13]. While each criterion offers a trade-
off between the size of the identified model and its predictive capabilities, they require an expensive
identification of a system at multiple model orders.

The purpose of this work is to derive a statistical approach to robustly determine the model order in
the output-only covariance-driven system identification prior to identifying the system dynamics. In the
proposed approach, this is achieved through a statistical analysis of the sensitivity of the eigenvalues of
output covariance Hankel matrix towards perturbations. It is shown that the variance of this sensitivity
significantly increases when the investigated eigenvalue is spurious, and remains small otherwise. A
practical approach to choose the model order and filter the varying eigenvalues is given. The proposed
methodology is then applied to denoise the output covariance Hankel matrices in subspace-based damage
detection, where the model order is assessed adaptively for different data sets. It is shown that using the
denoised damage-sensitive features reduces the number of false alarms in the damage detection of a
large-scale S101 bridge.

2. BACKGROUND

The proposed approach for Hankel matrix denoising and the related tools are introduced below.

2.1. Hankel matrix denoising

Let Y “ ty1 . . . yNu P RrˆN be a collection of N measurements of an output response of a linear
time-invariant (LTI) mechanical system observed by r sensors. The system response is assumed to be
generated by an independent and identically distributed zero-mean input process of finite fourth mo-
ments, which is persistently exciting the system dynamics of size n [14]. The system is assumed to be
stable, observable and with distinct eigenvalues. The dynamic behaviour of the system can be retrieved
from a low-rank structure of certain large-size matrices obtained from data, e.g., an output covariance
Hankel matrix. Let the theoretical output covariance of the measurements Ri “ Epyky

T
k´iq P Rrˆr be

collected in a block Hankel matrix

H “

»

—

—

—

–

R1 R2 . . . Rq

R2 R3 . . . Rq`1
...

...
. . .

...
Rp`1 Rp`2 . . . Rp`q

fi

ffi

ffi

ffi

fl

P Rpp`1qrˆqr, (1)

where p and q are chosen such that minppr, qrq ě n with often p ` 1 “ q. In practice H is not
available and a consistent estimate pH is obtained from the output measurements Y . When the true order
of the system dynamics n is known, the low-rank structure of pH can be revealed through the eigenvalue
decomposition

pH “
“

Ûsig Ûnull

‰

„

Λ̂sig 0

0 Λ̂null

ȷ

«

V̂ H
sig

V̂ H
null

ff

, (2)

where Ûsig “
“

û1 . . . ûn
‰

and V̂sig “
“

v̂1 . . . v̂n
‰

are respectively the n right and the n left eigen-
vectors corresponding to the n eigenvalues Λ̂sig “ diagpλ̂1 . . . λ̂nq ordered in a decreasing amplitude,
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and the matrices Ûnull “
“

ûn`1 . . . ûn`s1

‰

, V̂null “
“

v̂n`1 . . . v̂n`s1

‰

are respectively the right
and the left nullspace of Ĥ, related to the eigenvectors corresponding to s1 “ pp ` 1qr ´ n eigen-
values Λ̂ker “ diagpλ̂n`1 . . . λ̂n`s1q ÝÑ 0. Assuming knowledge of the model order n, the dynamic
characteristics of the underlying mechanical system, e.g., modes, can be retrieved from the observability
matrix estimate Ô “ ÛsigΛ̂

1{2
sig , whose computation is the fundamental step in many subspace system

identification and damage diagnosis algorithms.

In practice, however, the model order is unknown. The goal of this work is to assess it in a statistically
robust manner and to subsequently retrieve a low-rank approximation of pH

pH « qH “ ÛsigΛ̂sigV̂
H
sig, (3)

which is then used for subspace-based damage diagnosis. For the purpose of finding n, a statistical
framework which does not require a prior system identification is derived, where an additional layer of
information is added to the eigenvalue scree plot by assessing the sensitivity of the eigenvalue condition
numbers to perturbations.

2.2. Eigenvalue condition number

Let λ̂ be a simple eigenvalue of pH with the associated right and left eigenvector û and v̂, respectively.
The squared condition number of λ̂

κ̂2 “

ˆ

|û||v̂|

|ûH v̂|

˙2

“
ûH ûv̂H v̂

ûH v̂v̂H û
(4)

describes an inverted squared cosine of an angle between right and left eigenvectors associated with λ̂
[15, 16]. The condition number signifies that an Opϵq perturbation in the underlying matrix causes an
Opκϵq perturbation in the investigated eigenvalue. Thus, when κ̂ is close to 1 the perturbation of the
matrix entries will have less effect. Conversely, a large value of κ̂ indicates the enhanced sensitivity of
the associated eigenvalue against perturbations [15]. In consequence, the sensitivity of the eigenvalues is
controlled by the angle between the corresponding left and right eigenvectors, i.e.,

• when the eigenvectors û and v̂ are collinear (the underlying matrix is symmetric), κ̂ “ 1 for all the
considered eigenvalues, indicating that the related eigenvalues are not sensitive to perturbations,

• when the eigenvectors û and v̂ are not collinear (the underlying matrix is asymmetric), κ̂ ą 1 for
all the considered eigenvalues, indicating that the related eigenvalues are prone to perturbations.

In both cases, the non-zero eigenvalues of the signal are less prone to perturbations than the non-physical
eigenvalues related to noise. In this work, a statistical analysis of the eigenvalue condition numbers is
used to distinguish the highly varying eigenvalues of the noise, from the eigenvalues of the signal.

3. DISTRIBUTION OF THE EIGENVALUE CONDITION NUMBER

The statistical properties of the eigenvalue condition numbers inherit the statistical properties of the asso-
ciated right and left eigenvectors of pH. As a consequence of Central Limit Theorem and upon adoption of
the statistical delta method [17], the real and the imaginary parts of the right and the left eigenvectors con-
tained in X̂u,v “

“

ℜpûqT ℑpûqT ℜpv̂qT ℑpv̂qT
‰T are asymptotically jointly Gaussian distributed,

satisfying

X̂u,v “ N
`

Xu,v,
1
NΣu,v

˘

,

where Xu,v is the true value of X̂u,v and Σu,v is the joint asymptotic covariance of the right and the left
eigenvectors. The expression for Σu,v can be derived using the first-order perturbation of the eigenvalue
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problem of pH, analogously to the expression for the eigenvectors of the state matrix in [2], thus it is
omitted here for brevity. Subsequently, a dual framework for approximating the distribution of κ̂ is
devised. Two cases are considered:

• when pH tends to an asymmetric matrix, κ̂ is shown to be asymptotically Gaussian distributed,

• when pH tends to a symmetric matrix, κ̂ is approximated by a scaled and shifted χ2 distribution.

The proof outlining the conditions when H is symmetric is omitted here due to the space constraints.

3.1. Asymmetric H

When pH tends to an asymmetric matrix, the statistical properties of κ̂ are inferred by applying the first-
order delta method. The delta method is a well-established statistical tool that allows to characterize the
probability distribution of a function of a Gaussian variable as also Gaussian, based on the first-order
Taylor expansion of the considered function [17]; for κ̂ it writes

κ̂ « κ ` J κ
u,vX̂ , (5)

where J κ
u,v is the derivative of the condition number with respect to the real and imaginary parts of the

right and the left eigenvector of H, i.e., J κ
u,v “

„

Bκ

Bℜpuq

Bκ

Bℑpuq

Bκ

Bℜpvq

Bκ

Bℑpvq

ȷ

.

The first-order Taylor expansion of κ̂ only makes sense if the derivative J κ
u,v is non-zero. A necessary

and sufficient condition for J κ
u,v ‰ 0 is κ R 1 ðñ J κ

u,v ‰ 0, which can be proved analogously to [18].
In consequence, when pH tends to an asymmetric matrix, the aforementioned first-order Taylor expansion
can be applied and thanks to delta method the distribution of κ̂ is approximated as

κ̂ « N
ˆ

κ,
1

N
σ̂2
κ

˙

, (6)

where σ̂2
κ “ Ĵ κ

u,v
pΣu,vpĴ κ

u,vqT is the estimate of the asymptotic variance of the eigenvalue condition
number and pΣu,v with Ĵ κ

u,v are the consistent estimates of Σu,v and J κ
u,v respectively.

3.2. Symmetric H

When pH tends to a symmetric matrix, κ̂ tends to 1 for all the considered eigenvalues. In consequence,
the derivative J κ

u,v in (5) is null, as indicated by the conditions outlined in the previous section. In this
case the first-order Taylor expansion from (5) is insufficient to characterize κ̂ and the second-order Taylor
expansion is used

κ̂ « κ
loomoon

“1

` J κ
u,v

loomoon

“0

X̂ ` 1
2X̂

THκ
u,v X̂, (7)

where Hκ
u,v P R4pp`1qrˆ4pp`1qr is the Hessian, i.e., the second derivative of κ in u and v. Subsequently,

the asymptotic properties of κ̂ are characterized as a quadratic function of a Gaussian variable X̂N “?
NX̂u,v. The corresponding quadratic form QpX̂N q is defined as

QpX̂N q “ 1
2X̂

T
NHκ

u,vX̂N « Npκ̂ ´ 1q , (8)

whose distribution can be approximated by a scaled and shifted χ2 distribution after the methodology
developed in [19]. Detailed derivation of this distribution for κ̂ is hereby omitted; an interested reader
can refer to [19, 18] for the outline of the procedure. Consequently, the pdf of the distribution of κ̂
follows from the relation (8) as

fκpxq “
N

α
fχ2

l

ˆ

Npx ´ 1q ´ β

α

˙

, x P p1 `
β
N ,8s, (9)
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where the scaling α, the shift β and the number of degrees of freedom l are the parameters characterizing
the distribution defined by the probability density function fχ2

l
. The uncertainty in the estimates of κ can

be expressed through the quantile of the distribution for a desired confidence level γ, such as

tκ “ 1 `
β
N ` α

N tχ2 , (10)

where tχ2 denotes the quantile of the χ2 distribution with l degrees of freedom.

4. DENOISING ALGORITHM

Since the frameworks proposed in Section 3. are exclusive in theory, a decision between the two must
be made. For this purpose only the estimates of κ and the related uncertainties are used. When an
appropriate framework to approximate the distribution of κ̂ is chosen, the noisy eigenvalues must be
filtered to obtain an accurate low-rank approximation of pH. A sketch of the corresponding denoising
algorithm is proposed as follows:

1. To choose between the two approximation frameworks, tκ (10) is computed. When κ̂ ą tκ,
the considered κ̂ is not plausible for the proposed χ2 approximation, and a decision to assess its
statistical properties with a Gaussian distribution is made. Otherwise, κ̂ is chosen to follow the
scaled and shifted χ2 distribution (9).

2. To distinguish the highly varying eigenvalues when κ̂ is asymptotically Gaussian, an heuristic
threshold on the Coefficient of Variation (CV) of κ̂, i.e., CVκ̂ “ σ̂κ{κ̂ ą 5%, is enforced. Conse-
quently, if CVκ̂ exceeds the threshold, the related eigenvalue estimate is flagged to correspond to
noise.

3. To distinguish the highly varying eigenvalues when κ̂ is approximated by the shifted and scaled
χ2 distribution, an heuristic threshold on the normalized relative shift β̄ “ β{N is enforced. If β̄
exceeds the threshold, the related eigenvalue estimate is flagged to correspond to noise.

4. To compute qH only the non-flagged eigenvalues are retained in (3).

5. APPLICATION TO SUBSPACE-BASED DAMAGE DIAGNOSIS OF S101 BRIDGE

This section presents an application of the proposed denoising methodology to the subspace-based dam-
age detection of the well known S101 benchmark bridge study [20].

5.1. Subspace-based damage detection with denoised features

Based on features extracted from measurement data in the reference and in the current test state, the
goal of damage detection is to evaluate whether there is a significant change between the examined and
reference configuration (state). Let qHref and qHtest be the denoised estimates of the Hankel matrices
obtained from data collected in some baseline (reference) and tested states respectively. The subspace-
based damage detection residual [5] is defined as

ζ “
?
NvecpST

ref
qHtestq, (11)

where Sref contains columns of the left nullspace of qHref obtained with, e.g., singular value decomposi-
tion. A decision if the system is healthy or damaged is achieved by applying a non-parametric version of
the damage detection test

tnp “ ζT Σ̂´1
ζ ζ, (12)

where Σ̂ζ is an estimate of the asymptotic covariance of the residual (11). This test follows a central
χ2 distribution when the system is healthy and a non-central χ2 distribution in the damaged state. For a
decision about damage, the test value is compared to a threshold that can obtained empirically from the
values of the test in the reference state.
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5.2. Application

The application is carried out on measurement data from the monitoring campaign of the S101 Bridge in
Austria, shown in Figure 1.

Figure 1: S101 Bridge before demolition.

The response of the bridge to ambient loads was recorded using 15 acceleration sensors mounted on
its deck. Measurements were sampled with a frequency of 500Hz for a period of 3 days. During this
time the bridge was subjected to artificial damage, whose type and extent were controlled. From these
measurements, 215 data sets of length N = 165,000 are selected. The first 130 sets correspond to the
healthy state of the bridge, while the remaining data sets correspond to different damage scenarios. From
the healthy measurements, 15 data sets are selected to obtain a baseline Hankel matrix estimate pHref.
Note that in existing studies of damage detection on the S101 bridge data [20], the reference features
are obtained from a long series of 100 data sets. The current choice of a short baseline aims to emulate
the conditions when the reference data availability is scarce. Prior to the damage diagnosis, the Hankel
matrix denoising is showcased by following the steps of the pseudo-algorithm described in Section 4..
To illustrate that the simple scree plot is insufficient to chose the model order, the eigenvalues of pHref
and the corresponding condition numbers are showed on the left part of Figure 2. While no clear drop
between successive eigenvalues can be observed, the condition numbers corresponding to 1-4 and 10-
12 eigenvalues are relatively small, indicating that these eigenvalues are less prone to perturbation. To
determine the eigenvalues that corresponds to noise, first the choice between the two approximation
frameworks from Section 3. needs to be made based on the estimation of tκ (10), as illustrated on the
right part of Figure 2.

Figure 2: The first 20 eigenvalues of pHref and their corresponding condition numbers obtained from the reference
data set (left). Quantiles tκ corresponding to the first 20 eigenvalue condition numbers (right).

The condition numbers not satisfying tκ are considered Gaussian distributed. The condition numbers
satisfying tκ are considered χ2 distributed. A 5% threshold on CVκ̂ and on β̄ is used to map the highly
varying eigenvalues in the Gaussian case and the χ2 case respectively. The related procedure is illustrated
on Figure 3. In both cases, the eigenvalues corresponding to the condition numbers below the threshold
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Figure 3: Coefficient of Variation for κ̂ considered Gaussian (left). Normalized relative shift β̄ for κ̂ considered
χ2 (right).

Figure 4: Damage detection test statistics tnp without denoising (left) and with the denoised features (right) .

are used to obtain a denoised approximation of pHref (3).

The subspace-based damage detection test statistics tnp (12) without denoising and with the denoised
features are illustrated in Figure 4. In both cases, the same analysis parameters are used, i.e., p “ 20, the
number of blocks to obtain Hankel matrix covariance estimate equal to 100, and the number of columns
to obtain its nullspace equal to 255. It can be observed that by using the proposed denoising approach
the robustness of damage diagnosis is enhanced, while reducing the number of false alarms.

6. CONCLUSIONS

In this paper, a statistical methodology to approximate the model order of a dynamic system and to
consequently denoise the underlying Hankel matrix estimate was derived. The proposed method relies
on assessment of the sensitivity of the eigenvalue condition numbers to perturbations. The proposed
scheme is applied to damage detection of the S101 benchmark bridge case study, where it is shown to
reduce the number of false alarms. The incorporation of this approach within an Operational Modal
Analysis setting, bears potential for automated monitoring-based diagnostics.
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[3] M. Döhler, L. Mevel, Fast multi-order computation of system matrices in subspace-based system
identification, Control Engineering Practice 20 (9) (2012) 882 – 894.
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[20] M. Döhler, F. Hille, L. Mevel, W. Rücker, Structural health monitoring with statistical methods
during progressive damage test of s101 bridge, Engineering Structures 69 (2014) 183 – 193.

388



SELECTION OF DAMAGE-SENSITIVE FEATURES
BASED ON PROBABILITY OF DETECTION CURVES

Alexander Mendler1, Michael Döhler2, Christian U. Grosse3
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ABSTRACT
The first phase of each structural monitoring project is the operational evaluation. Its purpose is to
define relevant damage mechanisms and environmental conditions, to consider the data acquisition limi-
tations on site, and to justify the investment. Subsequently, relevant measurement quantities and damage-
sensitive features are selected, but very few systematic approaches exist in the literature on how to select
the most appropriate features. The presented paper fills this gap and develops an approach to select
damage-sensitive features based on probability of detection (POD) curves. The POD curves are gener-
ated based on a novel method for statistical damage detection tests that requires a finite element model
and vibration data from the undamaged structure. However, no data is required from the damaged state,
making it particularly suited for unique or large and complex engineering structures. The approach ex-
plicitly considers the uncertainties in the features due to unknown loads, measurement noise, and short
measurement durations. Although global damage-sensitive features are considered, such as modal pa-
rameters and subspace-based residuals, the detectability is evaluated for local structural components. The
paper includes a proof of concept study on a laboratory structure. The results demonstrate that the devel-
oped method successfully finds the feature with the highest damage detectability for a chosen damage
scenario, and that the detectability varies depending on the monitored local component.

Keywords: Structural health monitoring, ambient vibrations, Fisher information, probability of detection

1. INTRODUCTION

National building standards require visual inspections and non-destructive testing for critical engineering
structures in periodic intervals. Increasingly, structural health monitoring (SHM) system are installed,
meaning sensors are permanently installed on the structure and online damage diagnosis algorithms are
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trained to automatically diagnose damages in-between the scheduled inspections. The four main stages
of each SHM project are the operational evaluation, the data acquisition, the extraction of damage-
sensitive features (such as natural frequencies or mode shapes), and their statistical evaluation [1]. Each
phase exhibits distinct challenges, for example, the correct parametrization of damage, the selection
of appropriate measurement quantities and sensor locations, and the selection of appropriate damage-
sensitive features, and algorithms.

Feature selection is a critical topic. Some machine learning experts prefer a ’blind’ feature selection,
for example, based on neuronal networks whose training process can involve the automated selection of
features. Others prefer a ’manual’ selection based on engineering judgement, experiences with similar
structures, or analytical and structure-specific approaches. Such analytical approaches include sensitiv-
ity analyses using finite element models [1], where the effect of individual parameter changes on the
data-driven features is studied, or approaches based on confidence intervals, where the changes in the
features is put into relation to the statistical uncertainties that are inherent to the features’ estimation
process. However, few method-specific approaches exist to select the feature with the highest damage
detectability. A novel idea is to select features based on probability of detection (POD) curves for critical
damage scenarios, as they quantify the reliability of a SHM system. POD curves are standard approaches
to verify the effectiveness of non-destructive testing [2], but they are rarely used in SHM. The reason for
this is that most methods (e.g., the 29-29 method, the â vs. a method, the hit/miss method, the delta
method, Bayesian approaches) require empirical data from the damaged state, and this data is typically
not available for large and unique structures, such as bridges, highrises, and dams. The main idea of this
article is to propose a new method for the creation of POD curves that does not require empirical data
from damaged structures. The second objective is to apply this approach to various features and to select
the feature that exhibits the highest damage detectability.

The paper is organized as follows: Section 2. recaps state-of-the-art vibration models. Section 3. ex-
plains how damage-sensitive features can be formed based on the dynamic system properties, how they
can be evaluated statistically, and how POD curves can be predicted based on measurement data from
undamaged structures. Section 4. showcases a proof of concept study based on a laboratory beam with
extra masses, and Section 5. summarizes the main findings.

2. BACKGROUND

The presented approach is applied to vibration-based features and requires in-depth knowledge on oper-
ational modal analysis. This section recaps how modal parameters can be obtained from measurement
data using subspace-based system identification. All following considerations are based on linear and
time-invariant dynamic systems with m degrees of freedom (DOF)

Mü + Du̇ + Ku = f, (1)

where M,D and K are the mass, damping, and stiffness matrices Rm×m, u ∈ Rm is the displacement
vector, and f ∈ Rm is the force vector. Sampling the displacement vector at ∆t and substituting the
state vector xk =

[
u(k∆t)T u̇(k∆t)T

]T ∈ Rn , the model is transformed to a discrete-time state space
model, with n = 2m,{

xk+1 = Axk + wk

yk = Cxk + vk
(2)

where A ∈ Rn×n is the state transition matrix, C ∈ RNch×n is the output matrix and Nch is the number
of measurement channels. The term yk is the output vector, and wk and vk state noise and measurement
noise. [3]
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2.1. Subspace Decomposition

The first step is to acquire output data Y = [y1 y2 . . . yN ]T ∈ RN×Nch (displacements, velocities, or
accelerations), where N is the number of data points and Nch is the number of measurement channels.
Next, output covariance functions are evaluated Ri = 1

N−i
∑N−i

k=1 yk+iyTk and arranged in a block Hankel
matrix, i.e., a matrix with identical blocks on the anti-diagonals

Hp+1,q =


R1 R2 . . . Rq

R2 R3 . . . Rq+1
...

...
. . .

...
Rp+1 Rp+2 . . . Rp+q

 =
[
U1 U0

] [S1 0
0 S0

] [
VT
1

VT
0

]
, (3)

where p and q are time lag parameters. Thirdly, singular value decomposition (SVD) is applied to the
block Hankel matrix, and the resulting quantities are truncated at the presumed model order, determined
through the m physical modes of vibration, yielding the first n = 2m singular values in S1 and the
corresponding singular vectors U1 (the column space). The remaining singular values S0 contain noise
with the corresponding left null space vectors in U0.

2.2. Modal Identification

This section revisits how modal parameters can be derived from the block Hankel matrix [3]. First, the
observability matrix Op+1 is constructed based on the first n singular values and the column space

Op+1 = U1S1/2
1 . (4)

The output matrix C can be extracted from the observability in Eq. (4) as the first block row, and the state
transition matrix can be approximated through regression, using the shift-invariance property [4]

A = (O↑p+1)
†O↓p+1, (5)

where O↑p+1 and O↓p+1 denote the observability matrix without the last and without the first block row,
respectively. Modal parameters can be estimated by solving the eigenvalue problem AΦ = ΦΛ. Eigen-
values occur in complex conjugate pairs Λ = Φ−1AΦ = diag(λ1, λ̄1 . . . , λn, λ̄n) and so do the eigen-
vectors. Ultimately, natural frequencies and mode shapes are calculated as follows

µj =
log λj

∆t
, fj =

|µj |
2π

, Ψ = CΦ =
[
Ψ1 · · · Ψn

]
. (6)

2.3. Mode Shape Normalization

Mode shapes are unique dynamic properties up to a scaling factor. To enable a comparison of mode
shapes, they have to be normalized, e.g., to unit displacement of one of its components l,

Ψ̄i =
1

max{|Ψi,l|}
·Ψi. (7)

This forces the maximum amplitude of each normalized mode shape to be equal to one (even when
damage has occurred). Consequently, the maximum mode shape component carries no damage-related
information after scaling and the mode shape dimension might as well be reduced to Ψ̄red ∈ RNch−1×m,
which is done in this paper.

3. METHODOLOGY

3.1. Data-driven Residuals

This section shows a selection of damage-sensitive residuals that can be formed based on dynamic system
properties from the previous section. In the subsequent sections, the POD curves will be constructed
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for all features presented in this section. For example, the natural frequencies could be extracted and
compared to the baseline values from the training phase

r1 = f− f0, (8)

where the number of entries in the residual vector depends on the number of observed modes of vibration.
Another example is the mode shape residual. To reduce the mode shape matrix into a single vector, the
vectorization operator vec(·) is used and all matrix columns are stacked

r2 = vec(Φ̄red)− vec(Φ̄red,0), (9)

where the number of residual entries now depends on the number of modes of vibration and the number
of sensors. Since modal frequencies and mode shapes are the results from the same estimation procedure,
they can (and should) also be analyzed simultaneously, using a modal vector η with the corresponding
residual

r3 = η − η0, where η =

[
f

vec(Φ̄red)

]
. (10)

The last considered residual is the subspace-based residual. It takes advantage of the orthogonality
between the left null space singular vectors and the block Hankel matrix in the reference state [5]

r4 = vec(UT
0 Hp+1,q) (11)

and its size depends on the time lag parameters p and q.

3.2. Damage Detection

This section summarizes the specific damage diagnosis method for which the POD curves are con-
structed. In this paper, structural changes are analyzed based on a parametrized statistical test, i.e., a
statistical test on data-driven residuals that is linked to structural models through sensitivity vectors. The
test statistic is defined as [5]

t = N · rTΣ−1J
(
J TΣ−1J

)−1J TΣ−1r, (12)

where N is the sample size during testing, r is one of the damage-sensitive residual vectors from Sec-
tion 3.1., J is the first-order derivative of the residual with respect to structural design parameters θ

J =
∂Eθ[r]

∂θ

∣∣∣∣
θ=θ0

, (13)

and Σ is the sample covariance of the damage-sensitive residual which, when evaluated on nb datasets
of length N , is defined as

Σ =
N

nb − 1

nb∑
k=1

rk rTk . (14)

Structural parameters θ ∈ RH typically include material properties, cross-sectional values, prestressing
forces, or geometric properties of the structure that manifest damage. Defining the relevant damage
parameters is part of the first phase of each monitoring phase, the operational evaluation.

The Jacobian matrix J links structural parameter changes and changes in data-driven features through
r ≈ J θ. It can either be approximated using the finite difference method, or it can be calculated
analytically. For the subspace-based residual, the analytical calculation is described in [6] and for the
modal residuals, typical approaches include the modal approach [7] or Nelson’s method [8].
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Figure 1: Distribution of the test statistic in the undamaged and damaged state

The covariance matrix is calculated based on data, where the main diagonal holds the variance of each
residual entry. It can either be computed empirically based on multiple sets of features from the training
phase, or in a combined analytical/empirical approach based on a single measurement record for both
the modal residuals [9, 10] and the subspace-based residuals [5, 11].

Uncertainties due to unknown loads and measurement noise cause the test statistic in Eq. (12) to be
scattered. Since the damage-sensitive residuals can be approximated by a Gaussian distribution, the
tests can be approximated as a chi-squared distribution χ2(ν, λ) with ν = rank(J TΣ−1J ) degrees of
freedom, and non-centrality λ in the damaged state. To make a decision on whether or not the structure is
damaged, a safety threshold tcrit is introduced, for example, based on the distribution in the undamaged
state, and an alarm is issued if the test exceeds the safety threshold, see Fig. 1.

3.3. Probability of Detection Curves

A powerful aspect of the parametric hypothesis tests in Eq. (12) is that the mean test response to a well-
defined parameter change can be predicted based on quantities that are available in the undamaged state
of the structure. If damage is assumed to be restricted to a single parameter change θh − θ0h, the mean
test response (the non-centrality) λ is [12]

λ = N(θh − θ0
h)2Fhh, Fhh = J T

hΣ
−1J h, (15)

where Fhh is the Fisher information and J h is the column in the Jacobian matrix that corresponds to the
examined parameter θh. The larger the mean test response from Eq. (15), the more frequently the test
statistic yields values beyond the safety threshold, and the higher the POD. The POD can be quantified
as the area under the probability density function of the test statistics beyond the safety threshold, Fig.1,

POD =

∫ ∞
tcrit

fχ2(ν, λ)(t)dt, (16)

where the safety threshold could, for example, be defined based on the quantile value of the healthy state
distribution of the test statistic. Assuming that the test response λ is known, the formula from Eq. (15)
can also be solved for the minimum detectable parameter change

∆h =
1

θh

√
λ

NFhh
. (17)

Utlimately, the POD curves can be constructed as follows: First, the non-centrality is fixed to zero λ = 0.
Next, the non-centrality is gradually increased λ = λ+ ε in steps of ε, while evaluating the POD based
on the corresponding probability density function in Eq. (16) and Fig. 1 and the minimum detectable
damage ∆h using Eq. (17). Drawing the POD over ∆h yields the probability of detection curve for
parameter θh.
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4. APPLICATION

The goal of this section is to analytically construct POD curves based on data from an undamaged
structure. Subsequently, actual damage is applied, and it is demonstrated that the empirical POD is close
to the analytical one, which was predicted based on undamaged data.

4.1. Laboratory Experiment

The specimen under consideration is a hollow structural steel beam (HSS 152x51x4.78 mm) with a
modulus of elasticity of E = 210,000 MPa and a total mass of m = 56.8 kg, Fig. 3. The length of the
beam is 4.1 m and pin supports are installed on both ends. The instrumentation consists of eight vertical
accelerometers with a weight of 1.28 kg, placed at equal distances, and one shaker with a mass of 3.6 kg
and a moving mass of 360 g that injects white noise signals in-between sensors 2 and 3. All other signal
processing parameters are given in Table 1.

1 9752 3

4.11 m

86

Cross-section

4

Ch2Ch1 Ch8Ch7Ch3 Ch4 Ch6Ch5

0.69 m

Figure 2: Schematic depiction of the laboratory beam indicating the eight beam segments

Damage is parametrized as a change in mass so the experiments can be conducted non-destructively.
A finite element model is built and split into nine beam segments, Fig. 2. Each segment is assigned a
different mass value and only mass 8 and 9 are monitored, yielding the parameter vector

θ =

[
m8

m9

]
. (18)

Figure 3: Laboratory HSS beam with eight sensors and one shaker (left) and applied extra masses (right)

4.2. Analytical Results

All studies in this section are based on measurement data from the undamaged structure, where only
data from the first four measurement channels is used, Fig. 2. In this state, one long measurement with
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Data Acquisition Data Segmenting
Measured quantity acceleration No. of training segments 100

Sampling frequency 200 Hz No. of testing segments 100

Reference data length 110 min Samples/segment 2,000

Testing data length 110 min Duration/segment 10 s

Modal Parameters Subspace-based Residual
System order n 14 System order n 14

Time lags p 20 Time lags p 11

Table 1: Data acquisition and signal processing parameters
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Figure 4: Uncertainty quantification for natural frequencies and mode shapes

a duration of T = 110 min is recorded to be able to estimate the Fisher information, the reference values
for the residuals in Section 3.1. (the natural frequencies, the mode shapes, and the nullspace), and the
safety thresholds.

The Fisher information F can be calculated based on the Jacobian matrix J and the covariance matrix
Σ, see Eq. (15). The covariance matrix is calculated based on [5, 10] and for visualization, the standard
deviations of the measured modal parameters (i.e., the square root of the covariance’s main diagonal val-
ues) are shown in Fig. 4 through error bars. For modal parameters, the Jacobian matrix computation can
be done based on the numerical model but for the subspace-based residual, data-driven components have
to be considered [6]. Once the Jacobian and the covariance matrix are estimated, the Fisher information
can be calculated and the main diagonal values Fhh can be extracted.

The last required quantity is the safety threshold value tcrit. It is different for each damage-sensitive
residual, because the χ2−distribution exhibits a different number of degrees of freedom. In this study,
the thresholds are set based on the 0.1% quantile value of the healthy state distribution, meaning one out
of 1,000 test statistics is beyond the safety threshold in the undamaged state. The corresponding safety
thresholds are 22 for the subspace-based residual, 16 for the frequency-based residual, 16 for the mode
shape-based residual, and 22 for the combined frequency and mode shape-based residual.

With the Fisher information and the safety threshold at hand, the POD curves can be predicted for all
damage-sensitive residuals from Eq. (8)-(11) with the results being displayed in Fig. 5. The POD curves
are drawn for each monitoring parameter, i.e., for parameter 8 and 9 from Eq. (18). The first observation
is that changes in parameter 8 lead to a much higher POD than in parameter 9, meaning the damage
detectability close to the support is small. According to the POD curves for parameter 8, the frequency-
based residual is the most sensitive to changes in the eighth mass parameter, as a parameter change of
∆θ8 = 5% already leads to a POD close to 87%. The mode shape-based residual, on the other hand,
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is the least sensitive and a parameter change of 5% leads to a POD of close to 0%, and the subspace-
based residual leads to a POD of about 20%. It should be noted that the POD curves are created for
particular damage scenarios, captured through the parameter vector in Eq. (18). It appears that the mode
shapes do not change for mass changes in beam segment eight and nine, but for other scenarios, they
may significantly contribute to the damage detectability and should therefore be considered.
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Figure 5: Predicted POD curves based on data from the undamaged state for extra masses on beam segment 8
(left) and beam segment 9 (right) for different residual formulations from Section 3.1

4.3. Empirical Validation

In this section, data from the damaged structure is analyzed for the first time to validate the predictions
that were made based on data from the undamaged state. The main idea is to apply a 5% mass increase
to the eighth beam segment, simply by placing two washers on top of the beam between sensors seven
and eight (see Fig. 3, right side), and to verify whether the empirically evaluated POD is close to the
predicted ones from Fig. 5. To evaluate the POD empirically, the test statistic is applied to 100 data
sets from the damaged structure, with a measurement duration of 10 s for each segment, and the relative
number of tests beyond the safety threshold is counted.

For the frequency-based residual, the empirically evaluated POD is 81.1%, Fig. 6, which is very close
to the analytical value of 87%. Likewise, the mode shape-based residual leads to a POD of 0% and the
subspace-based residual exhibits a POD of 19.4%, as predicted in Fig. 5. This concludes the validation
study, as the analytical POD curves predict the empirical POD for all residuals with sufficient accuracy.

4.4. Discussion

Safety threshold. A peculiar observation appears to be that, in some cases, the mixed frequency and mode
shape-based residual leads to a lower POD than the frequency-based residual although more information
is available from the structure, see Fig. 5. The reason for this is that the frequency-based residual exhibits
a narrower distribution in the undamaged state and a lower safety threshold value of 16 instead of 22.
Therefore, an equivalent mean test response leads to a higher POD.

Sensor layout. The study in the previous section concluded that the frequency-based residual is more
sensitive to damage than the subspace-based residual. It is important to understand that this result is
only valid for the considered sensor layout, because both the sensitivity and the covariance of extracted
features depend on the sensor location. To emphasize this, Fig. 7 shows how the POD curves change if
the number of channels is increased from 4 to 8. Consequently, the number of mode shape coordinates
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Figure 6: Damaged state: Comparing the empirical POD for different residual formulations from Section 3.1

increases and the POD for the mode shaped-based residual increases for large parameter changes. At
the same time, the POD of the subspace-based residual increases from 20% (Fig. 5 left) to almost 100%
(Fig. 7 left), making it more sensitive to damage than the frequency-based residual. In other words, the
POD curves are powerful means for sensor placement optimization. A systematic approach to optimize
the sensor layout can be found in [13].

Measurement noise. One of the advantages of the developed approach is that the uncertainties in the
feature due to measurement noise is explicitly considered in the covariance matrix, without having to
measure the signal-to-noise ratio. To demonstrate this, vibration data is numerically generated and dif-
ferent noise levels are added to the vibrations. Fig. 7 shows the POD curves for two cases, the mode
shape-based residual with a measurement noise level that corresponds to 5% and 10% of the output sig-
nal’s variance. For the damage scenario ∆θ8 = 5%, the POD increases from about 0% to 12% due to
decreased noise level. For other residual formulations considered in this paper, the POD changed as well
but the mode shape-based residual appears to be particularly sensitive to measurement noise.

Spatial information. Since POD curves can be evaluated for different structural parameters, they carry
spatial information. However, they should not be considered probability of localization (POL) curves,
because the statistical test from Eq. (12) is not capable of localizing damage. More advanced statistical
tests can identify the parameter that has changed and an approach to determine POL curves can be found
in the referenced literature [14].

5. CONCLUSIONS

The main contribution of this paper is an approach to construct probability of detection curves, based on
statistical tests and a finite element model. Advantages over other approaches are that no data from the
damage state is required and the probability of detection can be analyzed based on data from undamaged

397



0 0.05 0.1 0.15 0.2
Parameter change "38

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

Subspace-based
Frequency-based
Mode shape-based
Mixed frequency and mode shape-based
Applied damage extent in Sec. 4.3

0 0.05 0.1 0.15 0.2
Parameter change "38

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

Mode shape-based (5% noise)
Mode shape-based (10% noise)

Figure 7: POD curve based on measurement data for an increased number of measurement channels (left), and
based on simulated data with varying levels of measurement noise (right).

structures. Moreover, the POD curves can be drawn for different structural parameters, so they include
spatial information.

Secondly, it was shown that the developed method for POD curves is a powerful means for feature
selection, as features with the highest damage detectability can be chosen before damage occurs. In
this paper, the approach is applied to natural frequencies, mode shapes, combined frequency and mode
shapes formulations, and the subspace-based residual, but many more features could be incorporated in
the framework.

A laboratory case study demonstrates that the POD curves are accurate, even for real data and noisy
measurement environments. The main findings are that the POD depends on the structural parameter
that is monitored, the sensor layout, and the measurement noise levels. The effect of measurement noise
appears to be particularly pronounced for mode shape testing, highlighting the importance of uncertainty
quantification in structural health monitoring in general.

An interesting future research topic is the extension to additional features as well as a thorough investi-
gation of measurement noise properties. If measurement noise is modelled accurately, POD curves could
be constructed based on numerically generated data and findings can be transferred to real structures.
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3 Sercel, Carquefou, France

ABSTRACT
The interpretation of stabilization diagrams is a classical task in operational modal analysis, and has the
goal to obtain the set of physical modal parameters from estimates at the different model orders of the
diagram. The diagrams are contaminated by spurious modes that appear due to the unknown (non-white)
ambient excitation and sensor noise, as well as possible over-modelling. Under the premise that spuri-
ous modes will vary and physical modes will remain quite constant at different model orders, the focus
is to retrieve the physical modes that constitute the identified model, while rejecting the non-physical,
spurious modes. Over the last decade, extensive research has been devoted for developing automated
strategies facilitating their interpretation. To this end, the interpretation is in principle disconnected from
the identification method and boils down to three stages i.e., clearing the diagram from the spurious
mode estimates, aggregating the modal parameter estimates in modal alignments and the final parameter
choice. Besides the point estimates of the modal parameters, also their confidence bounds are available
with some identification methods, such as subspace identification. These uncertainties provide useful
information for an automated interpretation of the stabilization diagrams. First, modes with high uncer-
tainty are most likely non-physical modes. Second, the confidence bounds provide a natural threshold
for the automated extraction of modal alignments, avoiding the requirement of a deterministic threshold
regarding the allowable variation within an alignment. In this paper, a strategy is presented for the auto-
mated mode extraction considering their uncertainties, based on clustering a statistical distance measures
between the modes. The relevance of the uncertainty consideration in the automated extraction will be
demonstrated on vibration data from two bridges.

Keywords: Operational Modal Analysis, uncertainty quantification, stabilization diagram, automated
interpretation, hierarchical clustering, subspace methods
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1. INTRODUCTION

Operational modal analysis is a fundamental task in engineering practice. Assuming vibrating structures
with a linear time-invariant behaviour, linear system identification techniques such as subspace-based
system identification [1, 2] can be used, where the system matrices of a state-space model are estimated
before retrieving the modal parameters from their eigenstructure. The model order of the system (corre-
sponding to the number of modes in the data) is in general unknown, and moreover non-physical modes
due to colored noise are usually present besides the physical structural modes of interest. Under the
premise that spurious modes will vary and physical modes will remain quite constant at different model
orders, the identification is repeated at different model orders using efficient algorithms [2] to obtain
the stabilization diagram. Then the focus is to retrieve the physical modes that constitute the identified
model, while rejecting the non-physical, spurious modes. With subspace-based methods, not only the
modal parameter estimates but also their uncertainty bounds can be obtained [3–6], which are valuable
information for clearing the diagrams of modes with high uncertainty and their further processing.

Over the last decade, extensive research has been devoted for developing automated strategies facilitat-
ing the interpretation of the stabilization diagrams, e.g. [7–9], where an overview is given in [10]. Such
strategies usually comprise three stages i.e., clearing the diagram from the spurious mode estimates, ag-
gregating the modal parameter estimates in modal alignments and the final parameter choice. A popular
tool for both the clearing and the aggregating stages is clustering based on a distance measure between
the modes of the stabilization diagram. A drawback of clustering in this context is that either the number
of clusters i.e., the number of modes, is usually assumed to be known a priori, or that thresholds on the
allowable distance of the elements within a cluster need to be defined.

The focus of this work is to alleviate these issues to achieve less dependence on user-defined thresholds.
First, a distance measure for clustering is proposed that is based on the modal parameters and their
uncertainties. In this way, the natural variation of the modes between different model orders due to the
intrinsic uncertainties is considered. Thresholds for the distances can then be defined based on a chosen
confidence level on statistical grounds, instead of defining them in absolute terms on allowable changes
in the modal parameters that could be quite different for different noise levels of the data. Second, to
further reduce dependence on the user-defined thresholds, an automatic post-processing of the clusters
with a merging and a separation step is introduced based on the cluster distances, where too tight or too
loose thresholds are alleviated for the final clusters.

This paper is organized as follows. In Section 2., the basics of the subspace-based system identification
and uncertainty quantification are recalled. In Section 3., the clustering strategy is developed for the
automated interpretation of the stabilization diagrams and applied to vibration data of two bridges in
Section 4., before concluding the paper in Section 5..

2. SUBSPACE-BASED SYSTEM IDENTIFICATION AND UNCERTAINTY QUANTIFICATION

2.1. System identification

Assume that the vibration behavior of the investigated structure can be modelled by a linear time-
invariant system, then its dynamics can be described by the discrete-time state space model{

xk+1 = Axk + wk

yk = Cxk + vk
, (1)

where A is the state transition matrix, C is the output matrix, and k is the integer time step corresponding
to the system at time t = k∆t, where ∆t is the sampling rate. Vector yk ∈ Rr contains the measured
outputs (such as accelerations, velocities, displacements, strains), and xk ∈ Rn is the state vector. The
state noise wk ∈ Rn is related to the unknown ambient excitation, and vector vk ∈ Rr is the output noise.
The modal parameters are related to the eigenvalues and eigenvectors (λi, φi), i = 1, . . . , n, of A and to
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C by

µi =
log(λi)

∆t
, fi =

|µi|
2π

, ζi =
−Re(µi)

|µi|
, ϕi = Cφi, (2)

where µi is an eigenvalue of the corresponding continuous-time system, fi is the natural frequency, ζi is
the damping ratio and ϕi is the mode shape at the output coordinates.

To estimate the system matrices A and C from the output data yk of length N , k = 1, . . . , N , and
consequently the modal parameters in (2), the reference-based covariance-driven subspace algorithm [1,
2] is used. The output covariance estimates with respect to a subset of reference sensors or projection
channels are computed as R̂i = 1

N

∑N
k=1 yk+iy

(ref)T
k . Arranged in block Hankel format, their theoretical

values satisfy the decomposition

Hp+1,q =


R1 R2 . . . Rq

R2 R3 . . . Rq+1
...

...
. . .

...
Rp+1 Rp+2 . . . Rp+q

 = Op+1Cq, where Op+1 =


C

CA
...

CAp

 (3)

with the observability and stochastic controllability matrices Op+1 and Cq, and where p, and q are time
lag parameters. With the singular value decomposition (SVD)

Ĥp+1,q =
[
U1 U0

] [S1 0
0 S0

] [
VT
1

VT
0

]
,

an estimate Ôp+1 = U1S1/2
1 of the observability matrix is obtained for the model order correspond-

ing to the truncation of the SVD. Then, the output matrix C is estimated from the first block row of
the observability matrix, and the state transition matrix is estimated from the shift-invariance property
Â = (Ô↑p+1)

†Ô↓p+1 where Ô↑p+1 and Ô↓p+1 are the observability matrix estimate without the last and
first block row, respectively. Ultimately, the modal parameters are obtained from the eigenvalues and
eigenvectors of Â and from Ĉ as in (2).

2.2. Uncertainty quantification

The computation of the modal parameter covariance results from the propagation of the sample covari-
ance on the Hankel matrix estimate Ĥp+1,q through all steps of the modal identification algorithm. This
sample covariance reflect in particular the unknown inputs due to non-measurable excitation sources and
the sensor noise, and they contribute in a non-trivial way to the covariance of the modal parameter es-
timates. The estimation of the sample covariance of the Hankel matrix is straightforward and is done
by separating the dataset for k = 1, . . . , N into blocks. The propagation to the modal parameter esti-
mates is then based on the delta method [11], where the analytical sensitivity matrices are obtained from
perturbation theory [3, 5].

Let ∆X be a first-order perturbation of a matrix-valued variable X , like X = Hp+1,q. Then, for a func-
tion Y = f(X) it holds vec(∆Y ) ≈ JY,X vec(∆X), where JY,X is the derivative that can be obtained
by analytically perturbing the functional relationship between X and Y , and where vec(·) denotes the
column stacking vectorization operator. Subsequently, covariance expressions for the estimates satisfy

cov(vec(Ŷ )) ≈ JY,Xcov(vec(X̂))J TY,X . (4)

In this context, the modal frequencies and damping ratios satisfy

∆fi ≈ Jfi,Hvec(∆H), ∆ζi ≈ Jζi,Hvec(∆H), (5)

where the analytical sensitivities are derived in detail in [3, 4], and the modal parameter covariance fol-
lows from (4) based on the Hankel matrix sample covariance and estimates of the respective sensitivities.
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3. AUTOMATED INTERPRETATION OF STABILIZATION DIAGRAMS

Clustering techniques are well-suited for the automated interpretation of stabilization diagrams [8, 12],
where data (the modes in the stabilization diagram) are regrouped according to similar properties into
clusters (the modal alignments) with respect to a chosen distance measure. If the distance between two
modes is “small”, they are grouped together in one cluster. The clusters should contain modes with stable
properties over several model orders. This section will first define appropriate distance measures, and in
a second part will describe the clustering process to obtain alignments.

3.1. Definition of distance

Amongst several distances for clustering [8], a basic distance is based on the frequency difference and
the MAC between two modes i and j in the stabilization diagram, defined as [7]

Dc
ij =

|fi − fj |
max(fi, fj)

+ (1−MACij). (6)

Here the absence of the damping ratio can be noticed, which is often not used for clustering due to its
high variability. The distance is normed in the sense that both the (normed) frequency and the MAC are
in the interval [0, 1], leading to Dij ∈ [0, 2] where Dij indicates a perfect match between the modes.

Despite its high variability, the damping ratio is an important information to be considered in the distance
measure, which can be achieved by appropriate weighting in

Dn
ij = α1

|fi − fj |
max(fi, fj)

+ α2
|ζi − ζj |

max(ζi, ζj)
+ α3(1−MACij), (7)

with the weighting factors αl ∈ [0, 1] with
∑
αl = 1 the distance can be interpreted as a change

in percent between two modes. In the classical distance (6) a 50% weighting is chosen by default.
Here a weighting is chosen as α = [50%, 5%, 45%] between the modal parameters, reflecting the
high uncertainty of the damping ratio. The threshold of the distance for elements in the same cluster is
chosen ad-hoc as Dlim = 0.9, corresponding to 10% allowable variation in each of the weighted modal
parameter components.

The normed distance (7) is based on the (deterministic) relative difference between the modal parameters.
Since the modal parameter uncertainties are available from their estimation as outlined in Section 2.2.,
this uncertainty can be used as a natural weighting in the computation of the distance. Considering
the uncertainties of the frequencies and damping ratios, the first part of the distance can be evaluated
statistically by

Sij =

[
fi − fj
di − dj

]T
Σ−1ij

[
fi − fj
di − dj

]
(8)

where

Σij = E

([
∆(fi − fj)
∆(di − dj)

] [
∆(fi − fj)
∆(di − dj)

]T)
,

which can be evaluated based on Equations (4) and (5). Since the modal parameter estimates are asymp-
totically Gaussian distributed [5], the variable Sij is asymptotically χ2 distributed with two degrees of
freedom. Its non-centrality parameter is different from zero if the theoretical values of the frequencies
and damping ratios are different. Hence, a known value for a target percentile of the distribution is
available for verifying the assumption that the theoretical values of the frequency and damping ratios are
equal, thus belonging to the same cluster. When targeting a 99% percentile, the corresponding threshold
obtained from the χ2 distribution is around 9.2, so modes with Sij < 9.2 can be considered to be a
member of the same cluster. A criterion for the MAC can also be added on statistical grounds based
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on [13]; however, for ease of presentation its deterministic format is kept in the following, defining the
combined distance, also called statistical distance,

Ds
ij = Sij + α̃(1−MACij). (9)

with an appropriate weighting α̃. This weighting factor can be chosen as follows. Considering a weight-
ing of 45% of the MAC to the distance measure (9) as in (7), and the remaining 55% to Sij having a
threshold of 9.2, a total threshold for Ds

ij in (9) is set to Ds
lim = 16. Then, assuming a criterion for the

allowable change of the MAC in the order of MACij > 0.9, this corresponds to α̃ = 70.

3.2. Clustering

There are many methods for clustering in the literature; amongst the most known are k-means and hi-
erarchical clustering [14] which are both in use for automated modal analysis. The k-means clustering
requires the number of clusters as an input, which is hard to know beforehand in modal analysis. How-
ever, it is mostly used to distinguish spurious modes from physical ones [8, 15]. Hierarchical linkage
clustering is based on a tree format where elements are clustered according to their distance, starting with
the smallest one and stopping when a maximal distance Dlim is reached. In the first step, each element
defines a cluster. In an iterative process, the two clusters with the shortest distance are combined into a
larger cluster, where the distance between two clusters is defined in different ways. Setting a limit on
the distances between the modes instead of defining the number of modes seems to be more natural for
clustering the stabilization diagram; hence the hierarchical linkage clustering is chosen in the following.

3.2.1. Linkage

The linkage is the choice of how the elements (i.e., the modes) form a cluster. Two popular ways of
linkage are complete and single. Single linkage regroups elements together by the minimum distance,
i.e., the distance between two clusters is defined by the minimum of the distances between their respective
elements when combining them. It can also be called nearest neighbor. On the other side, the complete
linkage regroups the clusters by the maximum distance of their elements, also known as farthest neighbor.
The direct consequence is that the complete linkage is more strict as the maximum distance of elements
should be under a specified value, while the single linkage allows more flexibility. For the first clustering
step, complete linkage is chosen to ensure that the distances between all cluster elements are below the
respective threshold Dlim as defined previously. Resulting clusters with too few elements are deleted.
In a second step, a post-processing of the retained clusters is carried out. To avoid modal alignments
that are split over the model orders due to too low thresholds, the clusters are checked with the single
linkage distance for merging. Furthermore, to avoid the contrary effect of over-agglomerated clusters
with several modes at single model orders due to too high thresholds, a separation step is introduced.

3.2.2. Post-processing

As presented before, the clustering depends on the thresholdDlim which is an a priori choice to a greater
or lesser extent – greater when considering deterministic distance measures and lesser when considering
statistical distance measures. If the threshold is too low physical modes will be missing; if it is too high
different modes will be agglomerated in the same cluster. For less impact of the choice of this parameter
several correction steps have been developed.

Merge
The first correction step is merging. The complete linkage for the initial clustering is strict and may

tends to divide single mode alignments into different clusters. To correct this, a near neighbor merging
was implemented comparing close neighbors between them based on the single linkage approach. The
minimum distance between two close clusters is computed, then if this distance is below the limit Dlim

the two cluster are merged.
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Separation
The second step is a separation. A global mode cannot have different estimates at the same model

order, yet this can happen when the threshold is too big, or when noise modes with similar properties are
nearby. The purpose is then to clean some outlier points that could have been mixed with a real mode,
and to possibly separate two modes that are close. To clean these clusters, a reference “mono-order”
subset is defined by the elements of the cluster with unique model orders, i.e. at the corresponding model
orders there is only one mode estimate in the cluster. For the remaining model orders with multiple
estimates the closest element to the reference sub-set is kept, and the others deleted if too close.

The final step is a size verification of the found cluster. Every cluster whose number of elements is
under a stability criterion nbstab is deleted. The criterion nbstab is chosen as 20% of the maximum order
computed. The modal parameters are then determined from the means of the cluster elements when
using the classical normed distance, or from the weighted mean of the elements, where the weights are
related to the modal parameter uncertainties at the different model orders [16].

Algorithm 1 Clustering
Require: Frequencies f , damping ratios ζ, mode shapes ϕ, model orders n, maximum distance Dlim,

minimum number of modes per alignment nbstab
Ensure: Clusters

1: Compute distance Dij between every pair of elements (Equation (7) or (9))
2: Compute the clusters with complete linkage with respect to Dlim

3: Sort the clusters by frequency and delete every cluster whose size is below nbstab
Merge

4: Compare the neighboring clusters and merge the closest if their single linkage distance is belowDlim

Separation
5: for Every cluster do
6: while There are model orders with several modes do
7: Compare the different modes at each order to the mode set at orders with single modes
8: Keep the closest and delete the other
9: end while

10: end for

4. APPLICATIONS

Vibration data of two bridges, namely S101 Bridge [17] and Z24 Bridge [18, 19] are used to apply the
developed cluster algorithm 1 using either of the two distances defined in (7) and in (9), denoted by
normed distance Dn and statistical distance Ds, respectively.
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Figure 1: Full stabilization diagram of the S101 Bridge

405



0 5 10 15 20 25 30 35
0

20

40

60

80

100

Frequency (Hz)

O
rd

er
n

Normed distance Dn

0 5 10 15 20 25 30 35
0

20

40

60

80

100

Frequency (Hz)

O
rd

er
n

Statistical distance Ds

Figure 2: Hierarchical clustering from full stabilization diagram of the S101 Bridge (Figure 1) based on normed
distance Dn (top) and statistical distance Ds (bottom)

4.1. S101 Bridge

One dataset of the reference state of S101 Bridge before damage [17] has been chosen for analysis,
containing measurements from 45 sensors during 5.5 min. The respective stabilization diagram with the
uncertainty bounds on the frequencies is shown in Figure 1, where the modal alignments are already
quite clear.

In Figure 2, the clustering results with the developed algorithm are shown based on the classical normed
distance (top) and the statistical distance (bottom). The five modes that were previously identified in [17]
are shown as vertical lines in Figure 2. They are clearly present with both distances. This validates the
use of statistical distance.

The uncertainty bounds of the modal parameters can also be used as hard criterion to delete very uncer-
tain modes.With a threshold on the coefficient of variation of the frequencies (standard deviation of the
frequency divided by the frequency), the stabilization diagram becomes clearer as shown in Figure 3 and
seemingly easier to analyze. The clustering results based on the cleaned stabilization diagram are shown
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Figure 3: Cleaned stabilization diagram of the S101 Bridge with threshold on the coefficient of variation of
frequencies of 1.5%
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Figure 4: Hierarchical clustering from cleaned stabilization diagram of S101 Bridge (Figure 3) based on normed
distance (top) and statistical distance (bottom)

in Figure 4, where they do not seem to be impacted by the application of the uncertainty threshold, while
allowing as faster computation of the clustering.

The clustering algorithm is efficient to automatically retrieve stable alignments; however some align-
ments of spurious modes are also stable but tend to vary between different datasets. In order to retrieve
the modes that are stable over different datasets, the same clustering technique can be applied on the
set of modes that is obtained from each of the datasets in the spirit of “cross-validation” of the modes.
Assuming only little change of the physical modes between the analyzed datasets, the same threshold for
their distances as in the analysis of a single stabilization diagram can be used.

The results of this second clustering on the modal parameters obtained from 21 successive datasets
in the reference state of S101 Bridge is shown in Figure 5 (left), where the five reference modes are
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Figure 5: Hierarchical clustering of modes obtained from clustering of 21 stabilization diagrams using the sta-
tistical distance with the same threshold Ds

lim = 16 as in the clustering of the diagrams (left), and the doubled
threshold (right)
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well recognized and other modes with higher variability are dismissed. To account for higher mode
variability between different datasets (as e.g. in tracking applications [12]), the threshold is usually
increased. Results with the doubled threshold are shown in Figure 5 (right), where more stable modes
are found. An in-depth analysis of these additional modes showed that the modes at 1 Hz and 18 Hz are
most probably non-physical, while the other modes are indeed physical modes with lower excitation.

4.2. Z24 Bridge

The second example is the Z24 Bridge [18, 19], where one dataset of the multi-setup measurements has
been used as in [4]. Measurements are more noisy, resulting in higher uncertainties of the modal pa-
rameters and more spurious modes, as shown in Figure 6, making the automated analysis more difficult.
Nevertheless, the same thresholds as in the previous example are used for the clustering, and the impact
of the developed steps for post-processing (merge and separate, see Algorithm 1) as well as the impact
of the statistical distance measure are analyzed.
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Figure 6: Full stabilization diagram of Z24 Bridge

In Figure 7 the result of the clustering is shown without any of the post-processing steps described
in Section 3.2.2.. The black vertical lines represent the reference modes identified in [19]. Indeed,
some of the alignments are split due to the more noisy data that would possibly require more relaxed
thresholds. After the post-processing steps, the final clusters correspond well to the structural modes in
Figure 8. However, there is one exception, namely the mode at 17 Hz that is very lowly excited and
shows high variability. It is missing when using the classical normed distance; however the statistical
distance considers its higher uncertainty intrinsically where it is well recognized. This shows that the
statistical distance is more robust in a noisy situation.

It should be noted that it the effect of cleaning the diagram was tested by putting a threshold on the
coefficient of variation of the frequencies, similarly as in Figures 2 and 3. First, since data is noisier,
the threshold of 1.5% needed to be increased in order to keep modes with higher estimation uncertainty.
Second, the results did not show improvement of the clustering, as already seen in Figure 3; moreover
the mode at 17 Hz (which has a higher variation) tends to get lost if the threshold is not set very carefully.
This shows that clustering strategy does not require a previous cleaning of the diagram, whereas such a
cleaning may be helpful for a manual visual inspection of the diagram.
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Figure 7: Hierarchical clustering without post-processing of the full stabilization diagram of Z24 Bridge based on
normed distance (top) and statistical distance (bottom)
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Figure 8: Hierarchical clustering after post-processing of the full stabilization diagram of Z24 Bridge based on
normed distance (top) and statistical distance (bottom)

5. CONCLUSIONS

The proposed statistical distance for clustering of stabilization diagrams has been validated on the S101
Bridge data. Then an application on the Z24 Bridge showed that in difficult noise condition the statistical
approach allows to find modal alignments even of very noisy modes due to its intrinsic consideration
of the uncertainties, leading to a more robust algorithm. The examples also showed that clearing the
diagrams with a hard criterion on modal uncertainty bounds may not be necessary, since the clustering
algorithm takes them into account directly, and may even be counterproductive. Furthermore, it has been
shown on the S101 Bridge data that the clustering approach is a means for cross-validation of modes
from several datasets.
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[2] Döhler, M., & Mevel, L. (2012). Fast multi-order computation of system matrices in subspace-
based system identification. Control Engineering Practice, 20(9), 882–894.

[3] Reynders, E., Pintelon, R., & De Roeck, G. (2008). Uncertainty bounds on modal parameters ob-
tained from stochastic subspace identification. Mechanical Systems and Signal Processing, 22(4),
948–969.
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ABSTRACT 

We present a novel approach to harmonic disturbance removal in single-channel wind turbine 
acceleration data by means of time-variant signal modeling. Harmonics are conceived as a set of quasi-
stationary sinusoids whose instantaneous amplitude and phase vary slowly and continuously in a short-
time analysis frame. These non-stationarities in the harmonics are modeled by low-degree time 
polynomials whose coefficients capture the instantaneous dynamics of the corresponding waveforms. 
The model is linear-in-parameters and is straightforwardly estimated by the linear least-squares 
algorithm. Estimates from contiguous analysis frames are further combined in the overlap-add fashion 
in order to yield overall harmonic disturbance waveform and its removal from the data. We describe a 
case study that illustrates the advantages of the algorithm in gaining insight in the structural vibration 
features of a particular data record. The algorithm performance is validated through the stabilization 
diagrams, which are a standard tool for determining modal parameters in many time-domain modal 
identification algorithms. The results show that the proposed approach is suitable as a pre-processing 
stage in operational modal analysis. 

 

Keywords: Wind turbine, harmonic disturbances, non-stationary signal modeling. 

1. INTRODUCTION 

Operational modal analysis (OMA) is a generic name for output-only system identification strategies, 
which provide characterization of large structures – wind turbines, bridges, etc. – from vibration signals 
under operating conditions. An extensive overview of the principal techniques in the context of 
structural health monitoring is given in [1]. Often measured output signals contain a mixture of the 
structure response (stochastic) and harmonic perturbation (deterministic) which typically arise in 
presence of rotating components e.g. periodic aerodynamic effects created between the tower and blades 
in a wind turbine – the tower shadow effect. If not properly taken into account, those disturbances may 
seriously hamper the OMA procedure by introducing bias in the estimation of the structural modes or 
identifying the harmonics as structural modes [2]. 
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 A large body of methods has been developed in order to assess the aforementioned 
identification problem. Most techniques introduce pre-processing extensions to OMA by means of 
harmonic detection and removal from the response. They either assume no a priori knowledge about 
the harmonic content – the  random decrement vibration signature[3][4], cepstrum editing[5][6], 
spectral kurtosis [2] [7][8], entropy [9] – or need an initial estimate of the harmonic fundamental 
frequency – time-synchronous averaging [10] and constant-amplitude nonlinear-phase sinusoidal 
modeling [11]. Other methods modify existing OMA algorithms by incorporating the knowledge on the 
harmonic disturbances into the identifying scheme: the least-square complex exponential identification 
[12], the eigensystem realization algorithm [13], the stochastic subspace identification [14], and the 
linear time-periodic system identification [15]. Let us also mention an approach which emphasize 
structural modes by combining transmissibility functions from different excitation points [16]. 

A major constraint of the majority of the state-of-the-art methods is related to the assumption that the 
harmonic content is quasi-stationary, which means that their instantaneous parameters generate a 
negligible bandwidth around the nominal frequencies. This assumption is, however, not valid for wind 
turbines because persistent wind field fluctuations in the rotor plane induce constant time changes in 
aerodynamic loads [17], [18]. These loads acting on the rotor affect the azimuth that, in turn, give rise 
to non-stationary instantaneous amplitude (IA) and phase (IP) in the harmonics [19]. The result is a 
harmonic spectral peak broadening – harmonic bandwidth increase – which can jeopardize the 
estimation of structural modes [20]. This is especially important for low-order harmonics (e.g. 1P – 
rotor rotational frequency and 3P – blade passing frequency), which possess a considerable energy and 
are clustered together with the first bending Fore-Aft moment (FA). 

Aware of the drawbacks mentioned above, we have designed a novel approach to harmonic estimation 
and removal in wind turbines inspired by the techniques which appear in speech and audio signal 
synthesis and coding [21]–[24]. It turns out that audio signals are similar in nature to vibration signals, 
in the sense that tonal music sounds are made out of time-variant deterministic plus stochastic 
contribution. In the present work, the harmonic disturbances in vibration signals are conceived as a 
collection of time-varying harmonically related sinusoids whose instantaneous amplitude and phase 
change over the time record. Those variations are simultaneously captured by low-degree polynomials, 
whose coefficients describe the relationship between harmonic instantaneous amplitude and phase in 
the analysis frame. Assuming that the harmonic dynamics evolve in time around some mean 
fundamental frequency, we show that a proposed model is unique and computationally reduces to 
resolving an overdetermined linear system of equations. The minimum-norm solution yields an estimate 
of the harmonic polynomial coefficients, which can readily be plugged in the signal model to obtain the 
corresponding waveform. The full record harmonic disturbance is synthesized by combining 
neighboring analysis frames via the weighted overlap-add method (WOLA), which ensures smooth 
waveform transitions over the frames [25]. The final step in the proposed method consists in subtracting 
the estimated harmonic waveform from the input data, which is now harmonic-free and can further be 
analyzed by well-known OMA techniques. An additional benefit of the present algorithm is that it 
provides an estimate of the harmonic instantaneous frequency, which can be useful in tracking 
applications. A schematic overview of the herein proposed method is outlined in Fig.1. 

2. METHOD 

Fig.1 outlines the chief signal processing steps in the proposed algorithm. The input single-channel 
vibration data 𝑥𝑥(𝑡𝑡𝑚𝑚), 𝑚𝑚 = 1,2, … ,𝑀𝑀 is split into a series of overlapped analysis frames, whose 
processing yields the corresponding short-term harmonic components ℎ�𝑙𝑙(𝑡𝑡𝑛𝑛),𝑛𝑛 = 1,2, … ,𝑁𝑁. Next, 
those components are windowed and merged by means of the WOLA method to obtain the long-term 
harmonic component ℎ�(𝑡𝑡𝑚𝑚). In the last step, the estimated harmonic perturbation is subtracted from the 
input and the residue 𝑟𝑟(𝑡𝑡𝑚𝑚) is harmonic-free. 
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Figure.1. Schematic pipeline of the proposed harmonic removal algorithm. 

2.1. Short-term harmonic signal modeling 

Structural analysis of wind turbines is based on acceleration registers taken at different tower heights, 
when available, or at the nacelle, under natural excitation conditions. One such register can be modeled 
in a length-N analysis frame [23], [24]: 

𝑦𝑦(𝑡𝑡𝑛𝑛) = ℎ(𝑡𝑡𝑛𝑛) + 𝑟𝑟(𝑡𝑡𝑛𝑛) = ∑ 𝐴𝐴𝑘𝑘(𝑡𝑡𝑛𝑛)𝑐𝑐𝑐𝑐𝑐𝑐�2𝜋𝜋𝜋𝜋𝑓𝑓0𝑡𝑡𝑛𝑛 + 𝜑𝜑𝑘𝑘(𝑡𝑡𝑛𝑛)� + 𝑟𝑟(𝑡𝑡𝑛𝑛)𝐾𝐾
𝑘𝑘=1 ,     𝑛𝑛 = 1,2, … ,𝑁𝑁.         (1) 

The harmonic component ℎ(𝑡𝑡𝑛𝑛) has its origin in the rotating behavior of the structure, remarkably the 
tower shadow effect (3P).  It is therefore represented by a set of harmonically related sinusoids with 
instantaneous amplitudes 𝐴𝐴𝑘𝑘(𝑡𝑡𝑛𝑛) and phases 2𝜋𝜋𝜋𝜋𝑓𝑓0𝑡𝑡𝑛𝑛 + 𝜑𝜑𝑘𝑘(𝑡𝑡𝑛𝑛), being 𝑓𝑓0 the average fundamental 
frequency which is usually known (e.g. a rotary encoder) and 𝜑𝜑𝑘𝑘(𝑡𝑡𝑛𝑛) the non-linear instantaneous phase 
deviation which can also accommodate errors in the initial estimation of 𝑓𝑓0. The residue 𝑟𝑟(𝑡𝑡𝑛𝑛) is 
stochastic in nature and contains the contribution from the structural modes and noise. The model (1) 
cannot be uniquely identified because analytically, it represents a non-linear underdetermined system 
of equations. In order to relax the non-linearity constraint, we rewrite (1) as a combination of the in-
phase and quadrature terms: 

𝑦𝑦(𝑡𝑡𝑛𝑛) = ∑ �𝑝𝑝𝑘𝑘(𝑡𝑡𝑛𝑛)𝑐𝑐𝑠𝑠𝑛𝑛(2𝜋𝜋𝜋𝜋𝑓𝑓0𝑡𝑡𝑛𝑛) + 𝑞𝑞𝑘𝑘(𝑡𝑡𝑛𝑛)𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑓𝑓0𝑡𝑡𝑛𝑛)� + 𝑟𝑟(𝑡𝑡𝑛𝑛)𝐾𝐾
𝑘𝑘=1 ,                         (2) 

𝑝𝑝𝑘𝑘(𝑡𝑡𝑛𝑛) = −𝐴𝐴𝑘𝑘(𝑡𝑡𝑛𝑛)𝑐𝑐𝑠𝑠𝑛𝑛�𝜑𝜑𝑘𝑘(𝑡𝑡𝑛𝑛)� ,           𝑞𝑞𝑘𝑘(𝑡𝑡𝑛𝑛) = 𝐴𝐴𝑘𝑘(𝑡𝑡𝑛𝑛)𝑐𝑐𝑐𝑐𝑐𝑐�𝜑𝜑𝑘𝑘(𝑡𝑡𝑛𝑛)�.                       (3) 

The system (2) is now linear-in-parameters but it still has more unknowns than equations. Let us assume 
that both 𝑝𝑝𝑘𝑘(𝑡𝑡𝑛𝑛) and 𝑞𝑞𝑘𝑘(𝑡𝑡𝑛𝑛) are in origin continuous functions of time. Accordingly, the products (3) 
are also continuous and can therefore be approximated in the analysis window by low-degree 
polynomials: 

𝑝𝑝𝑘𝑘(𝑡𝑡𝑛𝑛) ≈ 𝑝𝑝𝑘𝑘,0 + 𝑝𝑝𝑘𝑘,1𝑡𝑡𝑛𝑛 +⋯+ 𝑝𝑝𝑘𝑘,𝐷𝐷𝑡𝑡𝑛𝑛𝐷𝐷  ,         𝑞𝑞𝑘𝑘(𝑡𝑡𝑛𝑛) ≈ 𝑞𝑞𝑘𝑘,0 + 𝑞𝑞𝑘𝑘,1𝑡𝑡𝑛𝑛 +⋯+ 𝑞𝑞𝑘𝑘,𝐷𝐷𝑡𝑡𝑛𝑛𝐷𝐷.               (4)    

Combining (3) – (4) with (2) we obtain the signal model for the input data: 

𝑦𝑦(𝑡𝑡𝑛𝑛) = ∑ �∑ 𝑝𝑝𝑘𝑘,𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝐷𝐷
𝑖𝑖=0 𝑐𝑐𝑠𝑠𝑛𝑛(2𝜋𝜋𝜋𝜋𝑓𝑓0𝑡𝑡𝑛𝑛) + ∑ 𝑞𝑞𝑘𝑘,𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝐷𝐷

𝑖𝑖=0 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑓𝑓0𝑡𝑡𝑛𝑛)�+ 𝑟𝑟(𝑡𝑡𝑛𝑛)𝐾𝐾
𝑘𝑘=1  .              (5) 

The last expression is next rewritten in the computationally more convenient matrix form: 

𝒚𝒚 = 𝑩𝑩𝑩𝑩 + 𝒓𝒓 .                                                                       (6)  

.  .  .

    

ponent Harmonic-free input data
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Vectors 𝒚𝒚 ∈ ℝ𝑁𝑁 and  𝒓𝒓 ∈ ℝ𝑁𝑁 contain the observations and noise samples respectively whilst the model 
parameters are stored in a vector 𝑩𝑩 = �𝑝𝑝1,0  𝑝𝑝1,1 … 𝑝𝑝1,𝐷𝐷  𝑞𝑞1,0  𝑞𝑞1,1 … 𝑞𝑞1,𝐷𝐷  ⋯  𝑞𝑞𝐾𝐾,1 … 𝑞𝑞𝐾𝐾,𝐷𝐷�

𝑇𝑇 ∈
ℝ𝐾𝐾(2𝐷𝐷+2), with (∙)𝑇𝑇 being the transpose operator. The regression matrix B is a block matrix whose 
structure is given as: 

𝑩𝑩 = (𝑩𝑩1  𝑩𝑩2  … 𝑩𝑩𝐾𝐾) ∈ ℝ𝑁𝑁×𝐾𝐾(2𝐷𝐷+2)  ,                                                    (7) 

𝑩𝑩𝑘𝑘 = (𝜶𝜶𝑘𝑘   𝜷𝜷𝑘𝑘) × �𝒁𝒁 0
0 𝒁𝒁� ∈ ℝ

𝑁𝑁×(2𝐷𝐷+2) ,                                                (8) 

𝜶𝜶𝑘𝑘 = 𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑([𝑐𝑐𝑠𝑠𝑛𝑛(2𝜋𝜋𝜋𝜋𝑓𝑓𝑜𝑜𝑡𝑡1)  𝑐𝑐𝑠𝑠𝑛𝑛(2𝜋𝜋𝜋𝜋𝑓𝑓𝑜𝑜𝑡𝑡2) …   𝑐𝑐𝑠𝑠𝑛𝑛(2𝜋𝜋𝜋𝜋𝑓𝑓𝑜𝑜𝑡𝑡𝑁𝑁)]) ∈ ℝ𝑁𝑁×𝑁𝑁  ,                       (9) 

𝜷𝜷𝑘𝑘 = 𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑([𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑓𝑓𝑜𝑜𝑡𝑡1)  𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑓𝑓𝑜𝑜𝑡𝑡2) …   𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑓𝑓𝑜𝑜𝑡𝑡𝑁𝑁)]) ∈ ℝ𝑁𝑁×𝑁𝑁 ,                     (10) 

with  𝒁𝒁𝑛𝑛,𝑖𝑖 = 𝑡𝑡𝑛𝑛𝑖𝑖−1, 𝑠𝑠 = 0,1, … ,𝐷𝐷 being the time Vandermonde matrix. The estimation of the parameters 
𝑩𝑩 reduces to minimizing the following cost function: 

𝑩𝑩� = 𝑑𝑑𝑟𝑟𝑑𝑑𝑚𝑚𝑠𝑠𝑛𝑛
𝑩𝑩

‖𝒚𝒚 − 𝑩𝑩𝑩𝑩‖22 = (𝑩𝑩𝑇𝑇𝑩𝑩)−1𝑩𝑩𝑇𝑇𝒚𝒚 = 𝑩𝑩+𝒚𝒚 ,                                      (11) 

where (∙)+ designates the pseudoinverse of a matrix. A straightforward combination of the solution in 
(11) with (6) – (10) yields the estimate of the harmonic component in the analysis frame 

ℎ�(𝑡𝑡𝑛𝑛) = ∑ �∑ �̂�𝑝𝑘𝑘,𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝐷𝐷
𝑖𝑖=0 𝑐𝑐𝑠𝑠𝑛𝑛(2𝜋𝜋𝜋𝜋𝑓𝑓0𝑡𝑡𝑛𝑛) + ∑ 𝑞𝑞�𝑘𝑘,𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝐷𝐷

𝑖𝑖=0 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑓𝑓0𝑡𝑡𝑛𝑛)�𝐾𝐾
𝑘𝑘=1 ,   𝑛𝑛 = 1,2, … ,𝑁𝑁.           (12) 

In addition, we estimate the instantaneous amplitude and phase deviation for each harmonic in the 
analysis window:  

�̂�𝐴𝑘𝑘(𝑡𝑡𝑛𝑛) = ��∑ �̂�𝑝𝑘𝑘,𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝐷𝐷
𝑖𝑖=0 �2 + �∑ 𝑞𝑞�𝑘𝑘,𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝐷𝐷

𝑖𝑖=0 �2 ,                                       (13) 

𝜑𝜑�𝑘𝑘(𝑡𝑡𝑛𝑛) = −𝑑𝑑𝑡𝑡𝑑𝑑𝑛𝑛 �∑ 𝑝𝑝�𝑘𝑘,𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝐷𝐷
𝑖𝑖=0

∑ 𝑞𝑞�𝑘𝑘,𝑖𝑖𝑡𝑡𝑛𝑛𝑖𝑖𝐷𝐷
𝑖𝑖=0

�  ,      𝜋𝜋 = 1,2, … ,𝐾𝐾.                                  (14) 

Expressions (13) and (14) will be useful for calculating the harmonic bandwidth as part of the stochastic 

synthesis. 

2.2. Long-term harmonic signal modeling 

Let us suppose that we have acquired from the response analogue signal a total of M samples at the 
time instants 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑀𝑀 = 𝑀𝑀𝑓𝑓𝑠𝑠, 𝑀𝑀 ≫ 𝑁𝑁, with  𝑓𝑓𝑠𝑠 being the sampling rate. A vector ∈ ℝ𝑀𝑀 , which 
contain the aforementioned samples, is segmented in L overlapped analysis frames 𝑥𝑥𝑙𝑙(𝑡𝑡𝑛𝑛) =
𝑥𝑥(𝑡𝑡𝑛𝑛 + 𝑙𝑙𝑡𝑡𝑑𝑑), 𝑙𝑙 = 1,2, … , 𝐿𝐿  where 𝑡𝑡𝑑𝑑 is the time delay between contiguous frames whilst L is the 
number of frames covering the total duration of the input data. A successive application of the above 
algorithm to the overlapped analysis frames 𝑥𝑥𝑖𝑖(𝑡𝑡𝑛𝑛) (Fig.1, left panel) generate a set of short-term 
harmonic segments ℎ𝑙𝑙� (𝑡𝑡𝑚𝑚 − 𝑙𝑙𝑡𝑡𝑑𝑑), 𝑙𝑙 = 1,2, … , 𝐿𝐿. The synthesis of the long-term harmonic waveform is 
carried out by means of the weighted overlap-add technique [25], which consists in the following steps 
(Fig.1, central panel): 

1) Each segment ℎ𝑙𝑙� (𝑡𝑡𝑚𝑚 − 𝑙𝑙𝑡𝑡𝑑𝑑) is scaled by an analysis window 𝑤𝑤(𝑡𝑡𝑛𝑛), whose role is to mitigate 
potential discontinuities at the boundaries of adjacent analysis frames. The typical choice is a 
raised-cosine window e.g. Hann, which possesses a convenient scaling property: 
 

∑ 𝑤𝑤 �𝑡𝑡𝑚𝑚 − 𝑙𝑙 𝑁𝑁
2𝑓𝑓𝑠𝑠
� = 1𝑙𝑙∈ℤ  . 
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2) The windowed segments are linearly combined with an appropriate weighting, which 
compensates the windowing effect. The resulting waveform is the estimate of the harmonic 
disturbances in the data whose length covers M samples:   

ℎ�(𝑡𝑡𝑚𝑚) = ∑ 𝑤𝑤(𝑡𝑡𝑛𝑛)ℎ�𝑙𝑙�𝑡𝑡𝑚𝑚−𝑙𝑙𝑡𝑡𝑐𝑐�𝐿𝐿
𝑙𝑙=1
∑ 𝑤𝑤�𝑡𝑡𝑚𝑚−𝑙𝑙𝑡𝑡𝑐𝑐�𝐿𝐿
𝑙𝑙=1

 ,       𝑚𝑚 = 1,2, …𝑀𝑀.                               (15) 

By combining (13) – (15), we also obtain the harmonic instantaneous amplitude and phase deviation 
for the duration of the input data: 

�̃�𝐴𝑘𝑘(𝑡𝑡𝑚𝑚) =
∑ 𝑤𝑤(𝑡𝑡𝑛𝑛)𝐴𝐴�𝑙𝑙�𝑡𝑡𝑚𝑚−𝑙𝑙𝑡𝑡𝑐𝑐�𝐿𝐿
𝑙𝑙=1
∑ 𝑤𝑤�𝑡𝑡𝑚𝑚−𝑙𝑙𝑡𝑡𝑐𝑐�𝐿𝐿
𝑙𝑙=1

  ,                                                (16) 

𝜑𝜑�𝑘𝑘(𝑡𝑡𝑚𝑚) =
∑ 𝑤𝑤(𝑡𝑡𝑛𝑛)𝜑𝜑�𝑙𝑙�𝑡𝑡𝑚𝑚−𝑙𝑙𝑡𝑡𝑐𝑐�
𝐿𝐿
𝑙𝑙=1
∑ 𝑤𝑤�𝑡𝑡𝑚𝑚−𝑙𝑙𝑡𝑡𝑐𝑐�𝐿𝐿
𝑙𝑙=1

  .                                                (17) 

Finally, by subtracting the estimated harmonic contribution from the input data we obtain the residue, 
which contains only the structural information: 

𝑟𝑟(𝑡𝑡𝑚𝑚) = 𝑥𝑥(𝑡𝑡𝑚𝑚)− ℎ�(𝑡𝑡𝑚𝑚) ,      𝑚𝑚 = 1,2, … ,𝑀𝑀.                                    (18) 

2.3. Model tuning 

For the sake of implementation of the proposed harmonic signal model, we need to adjust the following 
analysis parameters: the number of harmonics K, the polynomial degree D and the analysis frame 
duration 𝑁𝑁𝑡𝑡𝑠𝑠. The number of harmonics will utterly depend on the application. For instance, in the 
context of the present application, often harmonics at integer multiples of the 3P frequency concentrate 
most of the energy and thus can potentially shadow the structural modes. Accordingly, in the harmonic 
signal model (5) only the corresponding terms in the sum (k = 3, 6, 9, etc.) should be considered. In 
other circumstances, we may need to monitor the dynamics of the tower’s first bending mode in strong 
wind conditions, so that it does not get coupled to the 1P component and possibly provoke structural 
damages. In that case, the harmonic signal model would contemplate a single term corresponding to the 
fundamental rotational component (k = 1). 

 The polynomial degree and analysis frame time duration determine the goodness-of-fit of the 
model to the data in the given bandwidth around the harmonic frequencies. They act in a mutually 
correlated fashion in order to constrain the model to the specific bandwidth and avoid possible 
undesirable effects of under and overfitting. Given the polynomial degree, shorter analysis frame yield 
small modeling bias but can inflate variances of the estimated parameters - overfitting. Conversely, 
enlarging the analysis frame duration, the uncertainty of the estimates reduces and modeling bias gets 
larger - underfitting. Moreover, we want to keep the polynomial degree as low as possible (the 
parsimony principle) in order to avoid numerical instabilities when evaluating the Moore-Penrose 
pseudoinverse matrix in (11). 

 The minimum frame duration is clearly conditioned on the mean period of the fundamental 
harmonic (1P or 3P as the case may be). As the signal model (5) represents sinusoids whose energy is 
clustered around the harmonic frequencies, the analysis frame must cover at least one period of 1P. In 
the context of the present application, we adjust the number of observations N in the way that the 
analysis frame covers approximately two 1P periods:  𝑁𝑁 = 2 𝑓𝑓0 𝑓𝑓𝑠𝑠⁄  . 

 As for the polynomial degree, we will assume that the instantaneous amplitude and phase 
deviation evolve linearly in the analysis frame. Accordingly, the expressions (3) become: 

𝑝𝑝𝑘𝑘(𝑡𝑡𝑛𝑛) = −�𝐴𝐴𝑘𝑘,0 + 𝐴𝐴𝑘𝑘,1𝑡𝑡𝑛𝑛�𝑐𝑐𝑠𝑠𝑛𝑛�𝜑𝜑𝑘𝑘,0 + 𝜑𝜑𝑘𝑘,1𝑡𝑡𝑛𝑛�,                                    (19.a) 

  𝑞𝑞𝑘𝑘(𝑡𝑡𝑛𝑛) = �𝐴𝐴𝑘𝑘,0 + 𝐴𝐴𝑘𝑘,1𝑡𝑡𝑛𝑛�𝑐𝑐𝑐𝑐𝑐𝑐�𝜑𝜑𝑘𝑘,0 + 𝜑𝜑𝑘𝑘,1𝑡𝑡𝑛𝑛� .                                     (19.b) 
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Applying the sum-of-angles trigonometric identities to the last expressions and making use of the small 
argument Taylor series approximation (𝑐𝑐𝑠𝑠𝑛𝑛�𝜑𝜑𝑘𝑘,1𝑡𝑡𝑛𝑛� ≈ 𝜑𝜑𝑘𝑘,1𝑡𝑡𝑛𝑛, 𝑐𝑐𝑐𝑐𝑐𝑐�𝜑𝜑𝑘𝑘,1𝑡𝑡𝑛𝑛� ≈ 1), we have: 

𝑝𝑝𝑘𝑘(𝑡𝑡𝑛𝑛) ≅ −𝐴𝐴𝑘𝑘,0𝑐𝑐𝑠𝑠𝑛𝑛�𝜑𝜑𝑘𝑘,0� − �𝐴𝐴𝑘𝑘,0𝜑𝜑𝑘𝑘,1𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑘𝑘,0 + 𝐴𝐴𝑘𝑘,1𝑐𝑐𝑠𝑠𝑛𝑛𝜑𝜑𝑘𝑘,0�𝑡𝑡𝑛𝑛 − �𝐴𝐴𝑘𝑘,1𝜑𝜑𝑘𝑘,1𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑘𝑘,0�𝑡𝑡𝑛𝑛2 = 

 = 𝑝𝑝𝑘𝑘,0 + 𝑝𝑝𝑘𝑘,1𝑡𝑡𝑛𝑛 + 𝑝𝑝𝑘𝑘,2𝑡𝑡𝑛𝑛2 .                                                                                         

(20.a) 

𝑞𝑞𝑘𝑘(𝑡𝑡𝑛𝑛) ≅ 𝐴𝐴𝑘𝑘,0𝑐𝑐𝑐𝑐𝑐𝑐�𝜑𝜑𝑘𝑘,0� − �𝐴𝐴𝑘𝑘,0𝜑𝜑𝑘𝑘,1𝑐𝑐𝑠𝑠𝑛𝑛𝜑𝜑𝑘𝑘,0 − 𝐴𝐴𝑘𝑘,1𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑘𝑘,0�𝑡𝑡𝑛𝑛 − �𝐴𝐴𝑘𝑘,1𝜑𝜑𝑘𝑘,1𝑐𝑐𝑠𝑠𝑛𝑛𝜑𝜑𝑘𝑘,0�𝑡𝑡𝑛𝑛2 = 

 = 𝑞𝑞𝑘𝑘,0 + 𝑞𝑞𝑘𝑘,1𝑡𝑡𝑛𝑛 + 𝑞𝑞𝑘𝑘,2𝑡𝑡𝑛𝑛2 .                                                                                        

(20.b) 

Subsequently, we choose the second-degree polynomials for the estimation of the harmonic model (5). 
Observe in (20.a) and (20.b) that the parameters 𝑝𝑝𝑖𝑖, 𝑞𝑞𝑖𝑖, 𝑠𝑠 = 0,1,2 possess certain internal structure, which 
depend on �𝐴𝐴𝑘𝑘,0,𝐴𝐴𝑘𝑘,1,𝜑𝜑𝑘𝑘,0,𝜑𝜑𝑘𝑘,1�. Albeit this information might enclose certain relationships between 
the instantaneous amplitude and phase deviation, it will not be dealt with in the present work. In the 
next section, we show that this choice for the polynomial degree and analysis frame duration is well 
suited to real wind turbine signals. 

3. RESULTS 

We will include here a representative case, out of the many analysed, of a wind turbine operating in the 
below-rated region (between cut-in and rated wind speed). The blade pitch is constant whereas the 
generator torque is varying, so that both the blade tip speed and rotor speed increase proportionally to 
the wind speed, [26]. The wind speed, shown in figure 2.a, is increasing at about constant rate of 0.13 
m/s per minute; as expected, the 3P frequency, figure 2.b, is increasing proportionally as well. A typical 
10 minute record is shown in figure 2.c, and its power spectrum in figure 2.d shows superimposed the 
frequency locations of the principal vibration modes and harmonic components. A substantial energy 
dispersion around average harmonic frequencies, due to the presence of non-stationarities, is clearly 
visible; moreover, observe in 2.e that visual identification of 1ºFA is hampered by the fact that 3P 
harmonic dominates low-frequency spectrum. As the 3P frequency is gradually changing, it is clear that 
the harmonic bandwidth will be determined by the combined dynamics of both the instantaneous 
amplitude and phase. This is further illustrated by the spectrogram of the input data, figure 2.f, where 
3P noticeably pop out regarding 1ºFA, especially in the first three minutes of the recording. 
Furthermore, it is evident from the energy time evolution that 3P harmonic exhibits a gradual increase 
in frequency, whilst the 1ºFA vibration mode’s frequency is fairly stable over time. The estimated 
harmonic waveform and individual harmonics are shown in figures 2.g and 2.h. 3P harmonic is 
evidently the most prominent, followed by 9P harmonic.  

The stabilization diagram of the raw acceleration data, figure 2.i completely fails in identifying stable 
vibration modes. This case study illustrates the fact that the SSI-COV is seriously jeopardized by the 
presence of non-stationarities in data, as well as colliding components. The suppression of the estimated 
harmonics from the data delivers the residue, whose stabilization diagram shows two stability lines 
located at the frequencies of the principal vibration modes: 0.39 Hz (1ºFA) and 1.85 Hz (2ºFA).  
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Figure 2. Raising low speed wind with approximately constant positive slope. 
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4. CONCLUSIONS 

As the main conclusion of our work we can say that the method proposed in this paper is highly effective 
in removing the influence of the harmonics in acceleration data acquired from the tower of a wind 
turbine, while keeping intact the information required to properly calculate the structural vibration 
modes. This affirmation is validated with a number of experimental tests, from where we have selected 
a single illustrative case presented here. It is important to stress that the signals taken from sensors at 
the nacelle were not intended to perform structural health monitoring (SHM); therefore, the presence of 
the harmonics in the data has rendered the analysis scenario far more complex. 

The main benefit of our approach, in contrast with other previously proposed techniques, is that it deals 
with non-stationarities in the harmonics in both amplitude and phase. We have used the information of 
the rotation speed provided by the SCADA, sampled at 100 milliseconds, but we also estimate 
instantaneous frequency/phase variations. This means that the algorithm could also work with an initial 
guess of the rotations speed, and then update its value from the estimated phase. In addition, an estimate 
of the instantaneous harmonic amplitude is also obtained in by the algorithm. 

The fact that we have introduced a precise non-stationary model for all relevant harmonics allows not 
only removing them from the original signal, but also obtain information about the harmonics 
themselves, and eventually, we believe, information of the structure. For instance, it seems noteworthy 
to us that there seems not to exist any correlation between wind speed and the 3P harmonic. Much in 
the same way, the harmonic envelopes, and therefore the instantaneous power of the different harmonics 
exhibit seemingly unrelated time patterns. These observations suggest a deeper analysis to find out what 
kind of factors, external or internal, influence the characteristics of the harmonics, and if they contain 
information on the structure which may be useful to determine possible failures in the turbine 
mechanical structure. This is an open area for future research. 
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ABSTRACT 

During recent years, wind energy has become an important renewable energy source, and a more 
attractive alternative to conventional ways of energy generation due to higher capacity utilization 
factors and shorter return of investments. Demand for larger wind turbines, which can produce more 
energy in the short term, is increasing rapidly in the market. To ensure that the turbine continuously 
generates energy, and stays perfectly operational during its lifespan, there is an increasing need to have 
a comprehensive understanding of their dynamics from a structural point of view. In this study, a novel 
distributed data acquisition system is designed and deployed throughout the tower height on a 2.5MW 
in-service fully operational wind turbine in Izmir/Turkey. Using the collected response data, the 
dynamic properties of the turbine tower are estimated by using operational modal analysis methods and 
compared with the modal analysis of the detailed finite element model.  

Keywords: Wind Turbine, Data Acquisition, Operational modal analysis 

1. INTRODUCTION 

Wind energy has become an important renewable energy source, and more attractive alternative to 
conventional ways of energy generation due to higher capacity utilization factors and shorter return of 
investments. Consequently, in energy investment enterprises there is an increasing demand for building 
taller/bigger and more advanced wind turbines. To ensure that the turbine continuously generates 
energy, and stays perfectly operational during its lifespan, there is an increasing need to monitor the 
structural integrity of these large structures.  
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In many parts of the world, large number of wind turbines have been installed in areas where earthquake 
hazard is high and this trend is still on-going, e.g., Turkey. When looked at in conjunction, Disaster and 
Emergency Management Authority’s publication (AFAD) “Seismic Hazard Map of Turkey” [1] with 
Republic of Turkey Ministry of Energy and Natural Resources’s “Wind Energy Potential Map of 
Turkey” [2], it can be seen that the regions with high potential of wind energy have high earthquake 
hazard levels. Therefore, majority of wind farms built in Turkey are in high earthquake hazard regions. 
Due to the obstacles set by wind turbine manufacturers and technical difficulties due to turbines 
operational conditions, the studies on the seismic behavior of wind turbines have so far been limited in 
literature [3]. 

Field-testing of full-scale structures plays an important role in determining the dynamic properties of 
structures under realistic operational and environmental conditions. Operational Modal Analysis 
(OMA), also known as only-output modal analysis, is based on measuring only the response (output) 
of a structure and using its ambient vibrations. under natural operational conditions, as unmeasured 
input for modal identification. As opposed to input-output methods for modal identification, OMA 
techniques are used under actual operating conditions and in situations where it is difficult or impractical 
to externally excite the structure. These techniques are used on structures under actual operating 
conditions so as to estimate operational natural frequencies and operational aerodynamic damping that 
are naturally different from the ones obtained under non-operational conditions [4-5]. 

Originally developed for system identification of civil engineering structures, e.g., buildings, towers, 
bridges, and offshore structures, OMA techniques today are also used on highly complicated 
mechanical structures such as aircrafts, ground vehicles, ships, and any type of rotating and moving 
machinery. While civil engineering structures are mainly excited by ambient stochastic forces like wind, 
waves, traffic and/or seismic micro-tremors, mechanical structures are typically excited by a 
combination of harmonic forces originating from rotating and reciprocating parts, and broadband 
excitations originating from either self-generated vibrations [6]. 

In this study, a distributed data acquisitions system, composed of accelerometers, thermocouples and 
humidity sensors, is deployed on an operating full scale-wind turbine. In addition to these data, 
operational (e.g., rotor speed, pitch angles, nacelle direction, generated power) and environmental (e.g., 
wind speed, wind direction, temperature, humidity) data from the SCADA system is collected 
synchronously with the vibrational data. Accelerometer data is processed using OMA techniques and 
modal parameters of wind turbine are estimated.   

2. WIND TURBINE 

The subject of the research is a wind turbine with 2.5 MW capacity operating by a local energy company 
in Urla/Izmir/Turkey (Figure 1). The hub height of this horizontal axis turbine with 3 blades is 90 
meters. The turbine tower is a thin-walled steel cylinder fixed to the reinforced concrete foundation 
with bolts. The nacelle, hub and blades are located on the turbine tower. Various features of the 
aforementioned wind turbine are presented in Table 1. 
 

Table 1. Properties of wind turbine 

Properties Value 
Rated power 2,5 MW 

Rated wind speed 13 m/s 
Cut-in wind speed 3 m/s 

Cut-out wind speed 25 m/s 
Rotor speed 9,6 – 16 rpm 

Rotor diameter 90 m 
Tower height 80 m 
Hub height 90 m 

Nacelle mass 91 tons 
Rotor mass 55 tons 
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(a) (b) 

Figure 1. a) The monitored wind turbine b) a general view of the wind farm. 
 
The wind turbine tower consists of four parts connected by flanges. The tower diameter and wall 
thickness change along the height (Figure 2). The material (S355) properties of the tower are as shown 
in Table 2. 
 

 
Figure 2. Tower geometry (flipped - right is top). 

 
Table 2. Material properties (S355). 

Properties Value 
Yield strength 355 MPa 

Tensile strength 510-630 MPa 
Modulus of elasticity 210 GPa 

Shear modulus 81 GPa 
Density 7850 kg/m3 

Poisson ratio 0,30 
 

The wind turbine sits on a relatively rigid ground. Some of the ground features found in the ground 
survey report conducted in December 2008 are presented in Table 3. 
 

Table 3. Soil properties. 

Properties Value 
Bearing capacity 3 kg/cm2 

Coefficient of soil reaction 15000 t/m3 
Primary wave speed 399-910 m/s 

Secondary wave speed 173-267 m/s 
 
A horizontal axis wind turbine generally consists of four parts: foundation, tower, rotor and nacelle. It 
is decided that the foundation and the tower to be modelled with a detailed finite elements model (Figure 
3), and the rotor and nacelle with a simplified approach (Figure 4) as detailed in literature [7]. 
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Figure 3. ANSYS model of the turbine tower and foundation.  

 

 
Figure 4. Model illustration of rotor and nacelle. 

 
Where mR is rotor mass, IR is  moment of inertia of rotor, mN is nacelle mass, ezR, exR, ezN and exN are 
eccentricity of nacelle and rotor. After the wind turbine model was created in the ANSYS environment, 
modal analysis is performed and the first 3 structural modes are presented in Table 4. 
 

Table 4. Mode frequencies. 

Frequency (Hz) Description 
0.36 1st structural 
3.03 2nd structural 
8.32 3rd structural 

3. DATA ACQUISITION SYSTEM 

Turbine tower height is 80 meters and there are horizontal platforms that can be walked on at every 20 
meters. These levels are named as follows according to their ground clearance; Level 1: 0 meter 
(foundation), Level 2: 20-meters, Level 3: 40-meters, Level 4: 60-meters, Level 5: 80-meter (top of the 
tower). Information regarding the components of the system installed along the height of the tower and 
the introduction of the system’s general features are given in Table 5. 

The sensors and the data acquisition system components used to collect data from the aforementioned 
levels are listed as follows (Figure 5): 
• Level 1 (0-meter): One triaxial accelerometer, three uniaxial accelerometers, and one 

temperature/humidity sensor are on this floor. To collect data from the sensors, two NI 9239 and 
one NI 9203 module modules is connected to a cDAQ-9185 chassis. In addition to these, industrial 
box PC, PoE switch, power supply, UPS and P2P antenna are on the foundation level.  

• Level 2 (20-meter): Two uniaxial accelerometers are on this floor. To collect data from the sensors, 
a NI 9239 module is connected to a cDAQ-9185 chassis.  

• Level 3 (40 meter): Two uniaxial accelerometers and one temperature/humidity sensor are on this 
floor. To collect data from the sensors, a NI 9239 module is connected to a cDAQ-9185 chassis.  

• Level 4 (60-meter): Two uniaxial accelerometers are on this floor. To collect data from the sensors 
a NI 9239 module is connected to a cDAQ-9185 chassis. 

• Level 5 (80-meter): Two uniaxial accelerometers and one temperature/humidity sensor are on this 
floor. To collect data from the sensors, a NI 9239 is connected to a cDAQ-9185 chassis. 
 

 

425



 

 

Table 5.  Components of the Data Acquisition System 

Device Description 
Uniaxial Accelerometer Measures acceleration 
Triaxial Accelerometer Measures acceleration 

Temperature and Relative 
Humidity Sensor Measures temperature and relative humidity 

NI 9239 Analog Input Module Converts continuous-time and continuous-amplitude analog 
signals to discrete-time and discrete-amplitude digital signals 

NI cDAQ-9185 Chassis Controls timing, synchronization, and data transfer (at most 
four modules can be attached) 

NI PS-16 Industrial Power 
Supply Provides power for all system in the tower 

P2P Wireless Antenna Transfers data from the switchyard to the turbine tower 

Industrial Box PC Runs Labview codes to operate the system and controls data 
streaming 

Workstation Runs various codes for analyses 
NAS Backs up all collected data 
UPS Prevents system shutdown in case of power failure 

Industrial Ethernet Switch Allows devices to communicate with each other 
Splitter Separates data signals from power signals 

 

 
Figure 5. Deployment of sensors along the tower 

 
Before the data acquisition system is deployed on the turbine, it is assembled and tested in the 
laboratory. System elements assembled together in the laboratory are shown in Figure 6 along with their 
short descriptions. 

 
Figure 6. Assembly of the system components in the laboratory. 
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In the system, NI 9185 cDAQ chassis are used to collect data synchronously on each level. Compatible 
inputs to the modules are provided by these chassis. The 8-port industrial switch, specifically 
manufactured for this project, enable all devices in the turbine tower to communicate with each other. 
At the same time, both data flow and energy flow is provided through the switch with PoE cables.  

 
One triaxial and three uniaxial accelerometers at foundation level and at each level (e.g., 20, 40, 60 and 
80 m) along the tower, two uniaxial accelerometers are placed perpendicular to each other. Technical 
characteristics of the accelerometers are shown in Table 6. 

Table 6. Specifications of accelerometers. 

  Uniaxial/Triaxial Accelerometer 
Acc. Range (g) ±5 
Sensitivity (mV/g) 540 

Frequency Range (Hz) 700 
Noise (μg/√Hz) 0.1 

Bias Temperature (mg/°C) 17 
Shock Survivability (g) 2500 
Operating Voltage (V) 5-20 

 
Since proper placement of the accelerometers along the horizontal and vertical directions is a critical 
issue in order to obtain the acceleration data correctly, they were placed with a spirit level as shown in 
Figure 7 and the position of the accelerometers relative to each other is measured with a laser meter and 
set as 20 m. It may be seen in Figure 7 that the accelerometers are attached by using strong magnets 
attached to the tower turbine wall. Temperature and humidity meters have been installed at three 
different levels (0, 40, 80 m) on the inner part of the tower.  
 

 
Figure 7. Attachment of the accelerometers. 

 
In addition, rotor speed, nacelle direction, pitch angle, actual power, outside temperature values are 
instantly transferred to the workstation on the campus from the SCADA system. The data collected 
from the switchyard where the SCADA system is located and from the turbine where the data 
acquisition system is installed are transferred to the workstation located in the campus. Communication 
and lossless data transfers between these three points are provided by a custom code developed using 
LabVIEW for this project.  

4. ANALYSIS AND CONCLUSION 

To estimate the modal properties of the wind turbine, 600 seconds acceleration data sampled with 2048 
Hz is recorded under the environmental and operational conditions given in Table 7. The turbine is at 
rest while the data was being collected. This is done to minimize the effect of the operational conditions. 
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Table 7. Enviromental and operational conditions. 

 Parameter Value 

Environmental 

Average Wind Speed 2 m/s 
Average Wind Direction* 272° 

Average Temperature 21° C 
Average Humidity 43% 

Operational 

Rotor Speed 0 rpm 
Pitch Angle 87° 

Nacelle Direction* 265° 
Generated Power 0 kW 

 
*from north-clockwise direction 
 
Before processing the data for parameter estimation, the following post-processing scheme is applied: 
first raw acceleration data filtered with a low-pass filter having 128 Hz corner frequency, and then the 
filtered data is decimated to obtain more manageable file size with a sample rate of 256 Hz. As presented 
in Table 4, fist three structural modes of the turbine are within the frequency range of 0-10 Hz. To 
prevent aliasing effect on the lower frequencies another low-pass filter with a corner frequency of 30 
Hz is used. Finally, acceleration data is detrended.  
 
The acceleration data processed accordingly is imported to the Artemis software [8], and each channel 
is assigned to a DOF point at the created turbine model. Operational modal analysis is performed using 
EFDD method and the structural modes are estimated. The power spectral density of the system and the 
mode shapes are shown in Figure 8 and Figure 9, respectively. The modes estimated from the analytical 
model and using the real-world data are presented together in Table 8. 
 

 
 

Figure 8. Estimated power spectral densities. 
 

Table 8. Comparison of the experimental vs. analytical natural frequencies. 

Frequency (Hz)  Damping (%) Description Experimental Analytical Difference (%) Experimental 
0.36 0.36 - 1.25 1st structural 
3.08 3.03 1.6 0.19 2nd structural 
8.26 8.32 0.7 0.07 3rd structural 
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Figure 9. First three structural mode shapes estimated using the real-world experimental data. 

 

Experimentally identified structural modes with their numerical counterparts are presented in Table 6. 
As can be seen from the numbers presented in the table, there is a good agreement between the 
experimental and numerical natural frequencies. Slight differences on mode frequencies originate from 
modelling assumptions. In the upcoming studies, the numerical model will be calibrated using the 
experimentally identified modal parameters. Acceleration data will be recorded under different 
environmental and operational conditions, and an extensive correlation work will be conducted to 
identify their effects on the estimated modal parameters.  
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